SCREENING OF BIOPROTECTIVE PROPERTIES OF VARIOUS PLANT EXTRACTS AND GAS CHROMATOGRAPHY-MASS SPECTROMETRY PROFILING OF ADENANTHERA PAVONINA STEM EXTRACT

SHUBHA BHADRAN1*, SANGEETHA ANNIE GEORGE2, SUDHAKAR MALLA3, HARINI BP4
1Department of Genetics, Indian Academy Centre for Research & Post Graduate Studies, Bengaluru, Karnataka, India. 2Department of Zoology, Indian Academy Centre for Research & Post Graduate Studies, Bengaluru, Karnataka, India. 3Department of Biotechnology, Indian Academy Centre for Research & Post Graduate Studies, Bengaluru, Karnataka, India. 4Department of Zoology, Bangalore University, Bengaluru, Karnataka, India. Email: shubhabhadran@yahoo.co.in

ABSTRACT

Objective: The search for various phytotherapeutic compounds is on rise due to a complex multifactorial phenomenon called drug resistance. The present study investigates the cytotoxic, antioxidant, and antiproliferative potential of methanolic extracts of Clitorea ternatea, Averrhoa bilimbi, Phyllanthus acidus, Tecoma stans, Curcuma aromatica, Anethum graveolens, Adhatoda vasica, Markhamia lutea, Spathodea campanulata, and Adenanthera pavonina.

Methods: The plant parts were extracted with methanol and screened for 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging abilities. The cytotoxic activity of the extracts was investigated on HeLa and HCT116 cells through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and cell cycle was analyzed by flow cytometry to determine the antiproliferative activity of the extracts. The stem extract of A. pavonina was further subjected to gas chromatography-mass spectrometry (GC-MS) analysis for purification of the compounds of interest. A two-way ANOVA was done to estimate the effect of the extract between samples remembered at p<0.05 level.

Results: Among all the studied samples, the extract of A. pavonina (stem) showed significant scavenging activity of 70.23% and 76.32% of scavenging compared to 74.58 % and 81.13% of that of reference standard in ABTS and DPPH assay, respectively. GC-MS analysis of the extract revealed the presence of 17 phytocompounds. MTT assay revealed that this extract (SB19) had promising cytotoxic activity against the two cancer cell lines, HCT116 and HeLa with inhibitory concentration 50% IC50 values of 25.86±0.21 µg/ml and 39.89±0.11 µg/ml, respectively. The extract treatment caused significant arrest in G2M phase of cell cycle.

Conclusion: A. pavonina (stem) extract displayed significant antioxidant and antiproliferative activity and can be considered as a potential candidate drug for anticancer studies.

Keywords: Antioxidants, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, Antiproliferative, Gas chromatography-mass spectrometry, Adenanthera pavonina.

INTRODUCTION

Plants are natural source of novel therapeutics as they contain various phytoconstituents which serve as a source of bioactive compounds with significant pharmacological action. These phytochemicals are referred to as secondary metabolites which are formed during the plants’ normal metabolic processes [1] and include alkaloids, flavonoids, coumarins, glycosides, gums, polysaccharides, phenols, tannins, terpenes, and terpenoids [2]. Oxidative stress is caused by free radicals which are produced in our body due to aerobic respiration and substrate oxidation [3-7]. When these free radicals are present in excess, they exert oxidative damage to cellular biomolecules such as membrane lipids, cellular proteins, DNA, and enzymes, eventually leading to many chronic diseases. However, the antioxidant actions of endogenous enzymes as well as natural and synthetic antioxidants can balance the production of free radicals [6,9]. Mode of action of antioxidants includes several mechanisms such as prevention of chain initiation, decomposition of peroxides, radical scavenging, chelating of transition metal ion catalysts, and prevention of continued hydrogen abstraction [10].

Research suggests that phytochemicals found in botanicals may help in combating various diseases including cancer, heart disease, stroke, high blood pressure, cataracts, osteoporosis, and urinary tract infections and in slowing the aging process. Being rich source of antioxidants, consumption of several plants was recommended [11,12]. Cancer is the second biggest killer after heart disease in India and the data from the WHO World Cancer Report released in 2015 indicate that in India, there are 7 lakh new cancer cases per year, killing over 3.5 lakh people every year. Certain preclinical studies provide evidence that phytochemicals can prevent colorectal cancer and other cancers due to their polyphenol antioxidant and anti-inflammatory effects [1-3-15].

The present work was thus planned with the aim to explore the bioactivities of these plant extracts by assessing their cytotoxic, antiproliferative, and antioxidant efficacy. Based on earlier investigation carried out for evaluation of their antifungal activity on Candida glabrata and screening of phytoconstituents and the current assessment, the active stem extract of Adenanthera pavonina was further subjected to gas chromatography-mass spectrometry (GC-MS) analysis for identification of the components present in the extract.

METHODS

Plant material

Fresh plant parts were collected during January to June 2013 from various regions in Bengaluru, Karnataka, India. Identification and authentication of the plants were done by Dr. Ramakrishna T M,
Department of Biological and Life Science, Bangalore University, and documented with their characteristic features. Plant material was washed, shade-dried and then homogenized to fine powder, and stored in airtight bottles with proper labeling for future use. The labeling provided for various plant parts were as follows: SB1 (Clitorea ternatea leaf), SB2 (C. ternatea flower), SB3 (Averrhoa bilimbi fruit), SB4 (A. bilimbi leaf), SB5 (Phyllanthus acidus leaf), SB6 (P. acidus fruit), SB7 (Tecoma stans flower), SB8 (T. stans leaf), SB9 (Curcuma aromatica leaf), SB10 (C. aromatica rhizome), SB11 (Anethum graveolens leaf), SB12 (A. graveolens stem), SB13 (Adhatoda vasica leaf), SB14 (A. vasica flower), SB15 (Markhamia lutea leaf), SB16 (M. lutea flower), SB17 (Spathodea campanulata leaf), SB18 (S. campanulata flower), SB19 (Adenanthera pavonina stem), and SB20 (A. pavonina leaf).

The chemicals methanol, ethanol, dimethyl sulfoxide (DMSO), ammonium per sulfate, triton were procured from qualigenis, 1,1-diphenyl-2-picrylhydrazyl (DPPH), quercetin, colchicine, and propidium iodide (PI) were purchased from Sigma-Aldrich, USA, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) solution, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reagent, and RNaseA were procured from Hi-Media, Bengaluru.

Extraction of plant material
Crude plant extracts were prepared by Soxhlet extraction method, wherein the powdered plant materials were extracted with methanol. The extracts were then taken in a beaker and kept on hot plate and heated at 50-60°C till all the solvent got evaporated. Dried extract was kept in refrigerator at 4°C for their future use.

ABTS assay
The assay is performed as per the study by Auddy et al., 2003 [16]. ABTS 7 mM (38.4 mg in 10 ml) and ammonium persulfate 2.45 mM (5.59 mg in 1 ml) were prepared in phosphate buffer saline (PBS, pH 7.4). ABTS radical cations are produced by reacting ABTS (7 mM) and ammonium persulfate 2.45 mM and incubating the mixture at room temperature in dark for 16 hrs. The solution thus obtained is further diluted with PBS to give an absorbance of 1.000. Different concentrations of the methanolic plant extracts and the reference standard quercetin (1 mg in 10 ml PBS) are added to 950 µl of ABTS working solution to give a final volume of 1 ml, made up by adding PBS. The absorbance is recorded immediately at 734 nm. The percent inhibition is calculated at different concentrations and the inhibitory concentration 50% (IC_{50}) values are calculated by Log-Probit analysis. The inhibition was calculated in following way: I (\%) = 100 × (A_{negative} - A_{sample})/A_{negative} where A_{negative} is the absorbance of the control, A_{sample} is the absorbance of the extract/standard. A percent inhibition versus concentration curve was plotted, and the concentration of sample required for 50% inhibition was determined and expressed as IC_{50} value. The lower the IC_{50} value indicates high antioxidant capacity.

DPPH assay
Screenings of antioxidant activity of the extracts were carried out by DPPH free radical scavenging assay [17,18] using ultraviolet spectrophotometric methods. According to the protocol, 200 µl of test solutions from different extracts was dissolved in methanol. This solution was then combined with 1.8 ml of DPPH methanol solution. After being mixed, solutions were kept at room temperature, in the dark for 30 minutes incubation. After the reaction, the absorbance was recorded at 517 nm. Methanol was used as a blank, DPPH solution was used as negative control (A_{negative}), and quercetin (20 mg/ml) was used as positive control standard. The antioxidant activity was given in terms of IC_{50} value. All the experiments were carried out in triplicates. The % scavenging effect was obtained from the formula: scavenging effect (\%) = [(A_{negative} - A_{sample})/A_{negative}] × 100, where A_{negative} was the absorbance of the control reaction and A_{sample} was the absorbance of the sample of the tested extracts. Percentage of inhibition was calculated using the following formula: % inhibition = [(A_{negative} - A_{sample})/A_{negative}] × 100 (A is absorbance).

Cytotoxicity assay
Cytotoxic activity of methanolic plant extracts against two cancer cell lines was evaluated by MTT assay. Hela and HCT-116 cell lines were cultured and grown in Dulbecco’s modified eagle medium (DMEM) containing 10% fetal bovine serum (FBS) and 2% antibiotic and maintained at 37°C in 5% CO_{2} for 24 hrs in a hummid environment. 50,000 cells of HeLa and HCT-116 cell lines were plated in triplicates in 96-well plates with DMEM and incubated for 24 hrs at 37°C. Varying concentration of plant extracts was taken in PBS-free DMEM and incubated for 24 hrs. 100 µl of 5 mg/10 ml MT solution in PBS was added to each well and incubated for 2-3 hrs. After incubation, MTT reagent was discarded. 100 µl of DMSO was added to each well that will dissolve the formazan crystals. The plates were read at 590 nm using a microplate reader. Percent viability is calculated using the formula: % cell viability = (OD control − OD sample)/OD control × 100.

Cell cycle analysis
1 × 10^6 cells from HCT-116 and HeLa cell cultures were seeded in 6-well plates containing 2 ml of complete DMEM, were plated in two different independent experimental setups, and were grown for 24 hrs in 5% CO_{2} incubator at 37°C. After 24 hrs of incubation, cells are treated with or without 200 and 320 µg/ml A. pavonina stem extract. 20 µM colchicine was used as a positive control and 1% DMSO as a negative control in 1 ml/well of DMEM and was incubated for 24 hrs. Thereafter, cells were collected and pelleted at 1500 rpm for 5 minutes at room temperature and the supernatant was discarded. The pellet was resuspended gently in 1× PBS and was fixed overnight at 4°C in 2 ml of fixxing solution (20% PBS in 70% ethanol). The suspension was centrifuged at 4000 rpm for 10 minutes at room temperature and the supernantant was discarded. Cells were washed twice with ice-cold 1× PBS. Later, cells were incubated for 15 minutes or 1 hr at room temperature in 500 µl of PI solution containing 0.05 mg/ml PI and 0.05 mg/ml RNase A in PBS. The percentage of cells in various stages of cell cycle in compounds treated and untreated populations was determined using FACS Calibur (BD Biosciences, San Jose, CA).

GC-MS analysis
A GC-MS analysis was performed to study the phytochemical components present in the methanol extract of stem of A. pavonina. GC-MS analysis was carried out on a GC Clarus 500 PerkinElmer system comprising a GC-MS instrument employing the following conditions: GC-MS analysis was carried out on a column Restek Rtx-5 (~30 m, 0.25 mm 5% diphenyl / 95% dimethyl polysiloxane), operating in electron impact mode at 70eV. Injection temperature was maintained at 280°C, helium flow rate as 1 ml/min and ion source temperature at 230°C. Injection was performed in the splitless mode and the volume was 1 µl. The column oven temperature was programmed at 40-280°C at a rate of 6°C/min injection mode, wherein the instrument was set to an initial temperature of 40°C and was maintained at this temperature for 5 minutes. At the end of this period, the oven temperature was raised up to 280°C which was maintained for 15 minutes. The mass spectra of compounds in samples were obtained by electron ionization at 70 eV and in the mass range of 50-700 mass units. Total GC-MS run time is 60 minutes. The essential chemical constituents were identified by interpreting the on mass spectra of GC-MS using the database of National Institute Standard and Technology (NIST) having more than 62,000 patterns. The name, molecular weight, and structure of the compounds of methanol extract of stem of A. pavonina were ascertained.

Statistical analysis
All of the statistical calculations employed in the present context were carried out with the SPSS10.0. Results were expressed as the mean±standard error of triplicates. A two-way ANOVA was used for statistical analysis; p>0.05 was considered statistically significant.

RESULTS

ABTS assay
The methanol extract of the stems of A. pavonina was fast and effective scavenger of the ABTS radical (Fig. 2) with an IC_{50} value.
of 19.67±0.21 µg/ml compared to 5.68 µg/ml of quercetin and the increase in this activity was dose dependent. Methanolic extracts of flower of *A. vasica* and *C. aromatica* rhizome also exhibited prominent ABTS scavenging activity with an IC\textsubscript{50} value of 28.23±0.11 and 29.57±0.22 µg/ml, respectively. Other plant extracts which exhibited ABTS scavenging activity included *P. acidos leaf, T. stans leaf,* *A. vasica leaf,* *S. companulata leaf,* and *M. lutea flower* with IC\textsubscript{50} values 36.61±0.05, 37.71±0.11, 40.23±0.22, 41.25±0.12, and 53.2±0.10 µg/ml, respectively. The extracts of *A. pavonina stem,* *P. acidos leaf,* *A. vasica flower,* *C. aromatica* rhizome, *T. stans leaf,* *S. companulata leaf,* *A. vasica leaf,* and *M. lutea* exhibited percentage inhibition of 70.23%, 64.13%, 50.52%, 51.24%, and 33.51%, respectively, compared to 74.58% of quercetin at 100 µg/ml concentration (Fig. 1). A two-way ANOVA between the concentration and different samples was conducted to compare the effect of samples on ABTS scavenging activity. There was a significant effect of different samples remembered at p<0.05 level. The significance effect on the ABTS scavenging activity between the samples and varying concentrations, F(6, 36)=60.584, p=2.44E-17 and F(6,36)=8.512926, p=0.00517.

DPPH assay

Among the plants extracts as seen in DPH assay, *A. pavonina* stem extract exhibited highest antioxidant activity with IC\textsubscript{50} value of 25.01±0.25 µg/ml compared to 4.411 µg/ml of the standard quercetin. Other plant extracts which exhibited antioxidant activity were *P. acidos leaf,* *T. stans leaf,* *M. lutea flower,* *S. companulata leaf* with IC\textsubscript{50} value of 43.23±0.31, 43.6±0.11, 53.92±0.44, and 35.67±0.20 µg/ml, respectively. The scavenging activity was presented as the percentage of inhibition of DPH free radicals (Fig. 4), wherein at 100 µg/ml maximum inhibitory effect of 76.32% was shown by *A. pavonina* stem extract compared to 81.13% of reference standard. Other extracts of *P. acidos leaf,* *T. stans leaf,* *M. lutea flower,* *S. companulata leaf* exhibited 47.89%, 59.87%, 51.58%, and 55.89% of inhibition, respectively (Fig. 3). A two-way ANOVA between the concentration and different samples was conducted to compare the effect of samples on DPH scavenging activity. There was a significant effect of different samples remembered at p<0.05 level. The significance effect on the DPH scavenging activity between the samples and varying concentrations, F(6, 36)=60.584, p=2.44E-17 and F(6,36)=8.512926, p=0.00517.

MTT assay

Among the various plant extracts used for the assay extracts of *A. bilimbi* leaf, *P. acidos leaf,* *A. vasica leaf,* *M. lutea leaf,* and *A. pavonina stem* demonstrated cytotoxic effect on HeLa cells (Fig. 7) with IC\textsubscript{50} values 72.35±0.23, 57.83±0.13, 91.23±0.31, 81.12±0.33, and 39.89±0.11 µg/ml, respectively. These same plant extract samples have shown dose-dependent manner of cytotoxicity in HCT116 cells as well (Fig. 6). The IC\textsubscript{50} value of *A. bilimbi* leaf, *P. acidos leaf,* *A. vasica leaf,* *M. lutea leaf,* and *A. pavonina stem* extract was 97.34±0.41, 45.67±0.05, 85.72±0.31, 74.53±0.13, and 25.86±0.21 µg/ml, respectively (Fig. 7).

Cell cycle analysis

The effect of *A. pavonina* stem extract at two different concentrations on cell cycle in HeLa cells and HCT116 cell lines as analyzed by flow cytometry is depicted in Fig. 8. The *A. pavonina* stem extract treatment on HeLa cells and HCT116 cells has significantly arrested G2M phase of cell cycle at 23.94% and 15.56%, respectively, at a concentration of 200 µg/ml and 29.86% and 25.37%, respectively, at a concentration of 320 µg/ml compared to untreated cells with 18.93% and 14.45% arrest, respectively. Cokchhine has exhibited a cell cycle arrest of HeLa cells and HCT116 cells at 48.38% and 50.33%, respectively, in G2M phase (Fig. 9).

GC-MS analysis

The test sample *A. pavonina* stem extract was subjected to GC-MS and the total separated peaks are shown in Fig. 10. The mass of the compounds and fragments recorded were matched with NIST database for identification of probable compounds present in the sample. All 17 compounds were identified from the GC-MS analysis of the sample SB19 extract exhibiting various phytochemical activities.

Fig. 1: The percentage inhibition of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay. All the values were average of triplicates. Quercetin is used as positive control

Fig. 2: The inhibitory concentration 50% values of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay. All the values were average of triplicates

Fig. 3: The percent inhibition of 1,1-diphenyl-2-picrylhydrazyl assay. All the values were average of triplicates. Quercetin is used as positive control

Fig. 4: The inhibitory concentration 50% values of 1,1-diphenyl-2-picrylhydrazyl assay. All the values were average of triplicates
and were predominantly responsible for the antifungal activity found in the extract against the pathogenic species mentioned. The retention time and percentage peak of various bioactive compounds are presented in Table 1. The major phytoconstituents present in the stem extracts of *A. pavonina* were isobutyl nitrate, 3,4 hexane dione, oxalic acid butyl propyl ester, isonitropropane, oxalic acid, ally pentyl ester, 2-benzyl-1,3-dioxolane, 1,3-dioxolane, 2-benzyl-1,3-dioxolane, cyclopentasiloxane, [(2,4,4,6,6,8,8-heptamethylcyclotetrasiloxan-2-yl)oxy]nonamethyl-, 2-heptyl-1,3-dioxolane, 3-ethoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris tetrasiloxane, malonic acid, bis(2-trimethylsilylethyl ester, acetic acid, [o-(trimethylsiloxy)pentyl]-, trimethylsilyl ester, methyl-alpha.-d-ribofuranoside, 3-methylmannoside, 2,3,4,5-tetrahydroxypentanal, and methyl 4-o-methyl-d-arabinopyranoside.

DISCUSSION

In recent years, various research validations have accentuated the importance of antioxidants in prevention and treatment of diseases by reducing the deleterious effects of free radicals [19]. Free radicals are one of the major factors responsible for inducing DNA mutation through various oxidative processes, resulting in the initiation of carcinogenesis [20]. The antioxidants through their ability to quench the free radicals and reactive oxygen bring about regression of premalignant lesions and inhibit their development into cancer [21]. Furthermore, the endogenous antioxidant system responsible for preventing the formation of free radicals in the body can be improved by supplementing natural sources with antioxidant properties [22]. Botanicals being a rich source of antioxidants act as efficient free radical scavengers and play significant role in chemoprevention.

In the present investigation, the result of ABTS assay indicated that among the eight plant extracts which demonstrated antioxidant activity *A. pavonina* stem exhibited most potent ABTS scavenging activity. Based on the percentage inhibition, the plant extracts can be ranked in the following descending order: *A. pavonina* stem > *P. acidus* leaf > *A. vasica* flower > *C. aromatica* rhizome > *T. stans* leaf > *S. companulata* leaf > *A. vasica* leaf > *M. lutea* flower. The DPPH assay results revealed that *A. pavonina* stem extract exhibited most promising antioxidant activity followed by extracts of *S. companulata* leaf, *P. acidus* leaf, *T. stans* leaf, and *M. lutea* flower. Studies on these plants by other researchers also indicate their radical scavenging activity. Strong antioxidant activity is shown by aqueous extract of the decoction prepared with barks of *A. pavonina* and *Thespesia populnea* with an effective concentration 50% (EC\(_{50}\)) value of 7.24±0.49 µg/ml [23], and also, it is demonstrated that the bark extract of *A. pavonina* has an EC\(_{50}\) value of 58.68 µg/ml [24]. The methanolic extract of fruit part of *P. acidus* exhibits moderate to good antioxidant activity in a dose-dependent manner and is found to contain flavonoid compounds [25]. Strong antioxidant properties were confirmed in the ethanol and methanol extract fractions of *T. stans*, wherein at a concentration of 0.1 mg/ml, the scavenging activity of ethanol and methanol extracts [26] reached 56.88% and 58.92%. Research reveals that the antioxidant mechanisms of *S. companulata* flower and bark extracts are distinct from each other and they present significant antioxidant capacity within a biological system in the presence of Fe\(^{3+}\) ascorbic acid [27]. Certain species of *Markhamia* such as the *Morchella tomentosa* methanolic extract indicate high DPPH radical scavenging capacity and antioxidant activity [28]. High concentration of antioxidant...
Bhadran et al.

phytochemicals such as polyphenolic compounds and flavonoids are present in *A. vasica* and thus the plant shows strong total antioxidant activity [29].

Investigation on the cytotoxic efficacy of various plant extracts on HeLa and HCT116 cell line by utilizing high-throughput MTT assay demonstrated that five of the plant extracts have cytotoxic effect on both the cell lines. Assessment of cytotoxic potential of methanolic extract of *A. bilimbi* fruits using brine shrimp lethality bioassay suggests significant activity [30]. Studies reveal significant in vitro cytotoxic activity of ethyl acetate extract of leaves of *P. acidus* against Hep G2 and DLA cell lines [31]. *A. vasica* extract possesses promising anticancer activity [32]. Vasicine acetate obtained by acetylation of the alkaloid vasicine isolated from ethanolic extracts of leaves of *A. vasica* showed potent cytotoxic activity against A549 lung adenocarcinoma cancer cell with an IC$_{50}$ value of 2000 µmg/mL. The decoction containing *A. pavonina* L. and *T. populnea* L bark extracts possesses potent antiproliferative and cytotoxic activities (Silva et al., 2011).

Based on the results of antioxidant assay and cytotoxicity assay, *A. pavonina* stem extract was subjected to assessment of antiproliferative activity on HeLa and HCT116 cell lines by flow cytometry analysis. The investigation revealed that *A. pavonina* stem extract significantly arrests the cell cycle at G2M phase and induces apoptosis.

In addition, the present study aimed to isolate the phytoconstituents by GC-MS profiling of active plant extract. Thus, the following phytoconstituents were isolated from the stem extract of *A. pavonina* (SB19):

- Isobutyl nitrate
- 3,4 hexane dione, oxalic acid butyl propyl ester, isonitropropane, oxalic acid, allypentyl ester, 2-benzyl-1,3-dioxolane, 2-benzyl-1,3-dioxolane, cyclopentasiloxane, [(2,4,4,6,6,8-heptamethylcyclotetrasiloxan-2-yl)oxy]nonamethyl, 2-heptyl-1,3-dioxolane, 3-ethoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris tetrasiloxane, malonic acid, bis(2-trimethylsilyl) ester, acetic acid, [o-(trimethylsiloxy)pentyl]-, trimethylsilyl ester, methyl-alpha.-d-ribofuranoside, 3-methylmannoside, 2,3,4,5-tetrahydroxypentanal, and methyl 4-o-methyl-d-arabinopyranoside.

Among the various organic acids evaluated for their antifungal activity oxalic acid has exhibited a potent antifungal effect on the growth of four fungal species *Aspergillus flavus*, *Penicillium purpurogenum*, 41.23%, and 32.93% at 320 µg/mL, respectively. Among the five plants extracts, *A. pavonina* stem extract exhibited potent cytotoxic efficacy in both the cell lines.

Fig. 9: Flow cytometry plots of the test sample *Adenanthera pavonina* stem extract against HeLa and HCT116 cell lines. (a) HeLa cells treated with 1% dimethyl sulfoxide (DMSO) as control; (b) HeLa cells treated with 20 µM of colchicine; (c) HeLa cells treated with 200 µg/mL of test sample extract; (d) HCT116 cells treated with 1% DMSO as control; (e) HCT-116 cells treated with 20 µM of colchicine; (f) HCT116 cells treated with 320 µg/mL of test sample extract.

Fig. 10: Gas chromato-mass spectrometry chromatograms of methanolic extract from the stem of *Adenanthera pavonina* (SB19)
Bhadran et al.

Table 1: The phytochemical constituents obtained on GC chromatogram with NIST library match

<table>
<thead>
<tr>
<th>S. No.</th>
<th>R<sub>index</sub></th>
<th>Compound name</th>
<th>Molecular formula</th>
<th>Molecular weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC chromatogram with NIST library match of peaks with RT 18.208 minutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>544</td>
<td>Isobutyl nitrate</td>
<td>C<sub>6</sub>H<sub>10</sub>N</td>
<td>103</td>
</tr>
<tr>
<td>2</td>
<td>1039</td>
<td>3,4 hexane dione</td>
<td>C<sub>7</sub>H<sub>12</sub>O<sub>2</sub></td>
<td>156</td>
</tr>
<tr>
<td>3</td>
<td>1250</td>
<td>Oxalic acid butyl propyl ester</td>
<td>C<sub>7</sub>H<sub>12</sub>O</td>
<td>188</td>
</tr>
<tr>
<td>4</td>
<td>637</td>
<td>Isonitropropane</td>
<td>C<sub>4</sub>H<sub>9</sub>N</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>1340</td>
<td>Oxalic acid, ally pentyl ester</td>
<td>C<sub>9</sub>H<sub>15</sub>O</td>
<td>200</td>
</tr>
<tr>
<td>GC chromatogram with NIST library match of peaks with RT 21.152 minutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>715</td>
<td>2-methoxy-1,3-dioxolane</td>
<td>C<sub>4</sub>H<sub>10</sub>O<sub>2</sub></td>
<td>104</td>
</tr>
<tr>
<td>7</td>
<td>578</td>
<td>1,3-dioxolane</td>
<td>C<sub>4</sub>H<sub>8</sub>O</td>
<td>74</td>
</tr>
<tr>
<td>8</td>
<td>1312</td>
<td>2-benzyl-1,3-dioxolane</td>
<td>C<sub>9</sub>H<sub>11</sub>O<sub>2</sub></td>
<td>164</td>
</tr>
<tr>
<td>GC chromatogram with NIST library match of peaks with RT 24.842 minutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1716</td>
<td>Cyclopentasiloxane, [([2,4,4,6,6,8-heptamethylcyclohexasiloxan-2-yl] oxy) nonamethyl-</td>
<td>C<sub>56</sub>H<sub>108</sub>O<sub>6</sub>Si<sub>6</sub></td>
<td>652</td>
</tr>
<tr>
<td>10</td>
<td>1235</td>
<td>2-heptyl-1,3-dioxolane</td>
<td>C<sub>8</sub>H<sub>17</sub>O<sub>2</sub></td>
<td>172</td>
</tr>
<tr>
<td>11</td>
<td>1612</td>
<td>3-ethoxy-1,1,7,7,7-hexamethyl-3,5,5-tris tetrasiloxane</td>
<td>C<sub>19</sub>H<sub>51</sub>O<sub>6</sub>Si<sub>3</sub></td>
<td>562</td>
</tr>
<tr>
<td>12</td>
<td>1468</td>
<td>Malonic acid, bis (2-trimethylsilyl) ester</td>
<td>C<sub>8</sub>H<sub>12</sub>O<sub>2</sub>Si<sub>2</sub></td>
<td>304</td>
</tr>
<tr>
<td>13</td>
<td>1566</td>
<td>Acetic acid, o-trimethylsiloxoy pentyl, trimethylstil ester</td>
<td>C<sub>16</sub>H<sub>32</sub>O<sub>2</sub>Si</td>
<td>296</td>
</tr>
<tr>
<td>GC chromatogram with NIST library match of peaks with RT 28.442 minutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1406</td>
<td>Methyl-alpha-d-ribofuranoside</td>
<td>C<sub>10</sub>H<sub>16</sub>O<sub>5</sub></td>
<td>164</td>
</tr>
<tr>
<td>15</td>
<td>1714</td>
<td>3-methylmannoside</td>
<td>C<sub>11</sub>H<sub>22</sub>O<sub>5</sub></td>
<td>194</td>
</tr>
<tr>
<td>16</td>
<td>1436</td>
<td>2,3,4,5-tetrahydroxy pentanal</td>
<td>C<sub>7</sub>H<sub>10</sub>O<sub>3</sub></td>
<td>150</td>
</tr>
<tr>
<td>17</td>
<td>1359</td>
<td>Methyl 4-o-methyl-d-arabinopyranoside</td>
<td>C<sub>12</sub>H<sub>23</sub>O<sub>4</sub></td>
<td>178</td>
</tr>
</tbody>
</table>

NIST: National Institute Standard and Technology, GC: Gas chromatography

REFERENCES

13. Greenberg ER, Baron IA, Tosteson TD, Freeman DH Jr, Beck GI, Bond JH, et al. A clinical trial of antioxidant vitamins to prevent...