INTRODUCTION
Cancer is one of the most severe diseases in which deregulating proliferation of abnormal cells is invading and disrupting surrounding tissues [1]. It begins in the cells of the body, where the orderly process is disturbed by producing new cells which are not needed and old cells do not die; thus these extra cells lump together to form a growth of tumor [2]. It is the leading cause of morbidity and mortality worldwide with approximately 21.7 million new cases, 13 million cancer-related deaths and is expected to rise by 70% around 2030 was reported by American Cancer Society; 2015 [3]. The partial success of clinical therapies including radiation, chemotherapy and surgery in the treatment of cancer, indicates that there is an urgent need of alternative strategies to control cancer [4]. Medicinal plants have been used as a remedy for treating human diseases for centuries, because of their production of new chemical entities as secondary metabolites of therapeutic value [5] such as alkaloids, flavonoids, tannins, and phenolics [6]. The secondary metabolites display significant activities and play a key role in the treatment of cancer [7]. Medicinal plants have become a focal point and an important alternative to develop the present and future health requirements against cancer; this is because secondary metabolites of plants could maintain the health and has the ability to cure various diseases, including cancer with less harmful effects [8]. In this regard Acacia farnesiana, a medicinally important plant was considered for its preliminary investigation for cancer therapy.

A. farnesiana (Linn.) Wild. (Family: Fabaceae) is a thorny bush or small tree grows up to 8 m tall throughout tropical parts of Indian subcontinent, especially in sandy soils of river beds around north and south India [9]. Morphologically the bark is rough and light brown in color. Branches are glabrous, purplish gray to gray, with extremely small glands. Stipules are spinescent, usually short, up to 1.8 cm long, rarely longer, never inflated. Leaves are twice pinnate, with a small gland on petiole and frequently one on the rachis near top of pinnae. Pinnae are 2-8 pairs and leaflets are 10-12 pairs which are minute, 2-7 mm long, 0.75-1.75 mm wide, glabrous, leathery. Flowers are in axillary pedunculate heads, calyx and corolla glabrous, scented. Pods are indehiscent, straight or curved, 4-7.5 cm length, about 1.5 cm width, dark brown to blackish, glabrous, finely longitudinally striate, pointed at both ends. Seeds are chestnut brown, in 2 rows, embedded in a dry spongy tissue, 7-8 mm long, 5.5 mm broad, elliptic, thick, and slightly compressed. A. farnesiana Linn. Pod (n-hexane and methanol) has antiproliferative properties and the DNA cleavage studies of the solvent extracts were performed on CT-DNA was found that the extracts and its fractions showed significant activity at the concentrations tested.

RESULTS
The antiproliferative activity results revealed that n-hexane extract (S$_1$) has showed activity against MCF-7 (21.70 %) cell line and methanol extract (S$_5$) against K562 (24.5%) and HePG2 (23.3%) cell lines. The DNA cleavage could be seen at every concentration tested by n-hexane (S$_1$), DCM (S$_4$), and methanol (S$_5$) extracts and significant cleavage was observed at concentrations of 25, 50, and 100 µg by fractions (S$_4$) and (S$_5$) of methanol extract.

CONCLUSION
The results indicated that the extract of A. farnesiana pod (n-hexane and methanol) has antiproliferative properties and the DNA cleavage studies performed on CT-DNA was found that the extracts and its fractions showed significant activity at the concentrations tested.

Keywords: MTT assay, CT-DNA, Ethidium bromide, Agarose gel electrophoresis, Leukemia, MCF-7 cell line, K562 cell line.
dimethyl sulfoxide (DMSO), agarose, ethidium bromide (EtBr), and other chemicals were from (HiMedia Mumbai, India).

Collection of plant material
The pods of A. farnesiana were collected in the month of February-March 2014 around Kadur town of Chikmagalur District, Karnataka State, India, and were authenticated with voucher specimen no. KIU1/24/40 at the Herbarium, Department of Botany, Kuvempu University, Shankaraghatta, Shimoga Dist. Karnataka State, India.

Preparation of extract [27]
The extraction of the pods was achieved by grinding the material of A. farnesiana pods (100 g), packed in Soxhlet extractor and extracted successively using different solvent, viz., n-hexane (500 ml), dichloromethane (DCM) (500 ml), and methanol (500 ml) with their increasing order of polarity. The extraction of A. farnesiana pod was carried out by a Soxhlet extraction method successively for about 48 h until the color discharge in the siphon tube of Soxhlet apparatus. The yield after evaporation of extracts was n-hexane (S_1) (0.45 g), DCM (S_2) (0.26 g), and methanol (S_3) (1.77 g). The obtained extracts were stored at -4°C for further analysis.

Preparation of fractions S_4 and S_5 from A. farnesiana methanol extract
The crude methanol extract of A. farnesiana pod was dissolved in 10% of sodium bicarbonate solution and kept overnight to undergo precipitation and later centrifuged to separate the precipitate. The precipitate was dissolved in water and extracted with ethyl acetate. The ethyl acetate extract was evaporated to dryness, and the dried mass was dissolved in methanol to yield two fractions one is methanol soluble fraction designated as S_4 and another methanol insoluble fraction designated as S_5.

Phytochemical screening
Preliminary phytochemical screening of A. farnesiana pod was performed according to the reported methods of Trease and Evans [28] and Harborne [29]. The phytochemical screening results are represented in Table 1.

Antiproliferative activity by MTT assay
Cell proliferation is the process where the number of cells increases or uncontrolled cell growth takes place due to an imbalance in the cellular mechanism, to control the growth of cells antiproliferative measures were carried out using various cell lines [30]. The four different cell lines that were used in the study are colorectal adenocarcinoma (Colo 205); chronic myelogenous leukemia (K562); breast adenocarcinoma (MCF7); and hepatocellular carcinoma (HepG2). The cell lines were obtained from the National Centre for Cell Sciences, Pune, India, and were cultured at a seeding density of 0.2×10⁶ in Dulbecco’s modified Eagles Medium/Roswell Park Memorial Institute medium supplemented with 10% fetal bovine serum, 100 U/ml penicillin, and 100 µg/ml streptomycin, respectively, maintained in a humidified atmosphere with 5% CO₂ at 37°C. The samples were dissolved in DMSO (DMSO; not exceeding the final concentration of 0.01%) and further diluted in cell culture medium. The antiproliferative response of the extract was assessed by MTT assay [3-(4, 5-dimethylthiazole-2-yl) - 2, 5-diphenyltetrazolium bromide] [31]. Cells (∼10,000) were plated in 200 µl growth medium in the presence or absence of the extract (25, 50, 100, and 200 µg/ml) in 96-well culture plates for 24 hrs. Then, the culture plates were centrifuged at 2000 rpm for 10 minutes at room temperature. Supernatant (100 µl) was discarded, and 20 µl of MTT (5 mg/ml in PBS) was added to each well and incubated for 4 hrs at 37°C. The viability of the cells was determined at 570 nm using a spectrophotometer.

DNA cleavage activity by agarose gel electrophoresis
The extract was added separately to the DNA sample. The sample mixtures were incubated at 37°C for 2hrs. The treatment of DNA samples using electrophoresis was done according to the method adopted by Sambrook et al. [32]. Weigh 250 mg of agarose and dissolve in 25 ml of trisacetate ethylenediamine (TAE) buffer (4.84 g Tris base, pH 8.0, 0.5 M EDTA/1:1) by gentle heating. As the gel attains ~55°C, pour it into the gel cassette fitted with comb and allow solidifying. Carefully remove the comb, place the gel in an electrophoresis chamber flooded with TAE buffer. Load 20 µl of DNA sample (mixed with bromophenol blue dye at 1:1 ratio) into the wells, along with DNA marker and pass the constant 50 V of electricity for around 45 minutes. After 45 minutes remove the gel and stain with EtBr solution (10 µg/ml) for 10–15 minutes and observe the bands under UV transilluminator.

RESULTS
Phytochemical screening
Phytochemical screening of various solvent extracts of A. farnesiana as well as subfractions of the extract was carried out according to the methods adopted by Trease and Evans [28] and Harborne [29]. The presence of phytochemicals in various solvent extracts reveals the class of compounds present. The preliminary screening results revealed that the n-hexane and DCM extracts showed the presence of steroids, methanol extract revealed the presence of flavonoids, steroids, and glycosides whereas the methanol soluble fraction of methanol extract revealed the presence of flavonoids and steroids. The methanol insoluble portion has shown a positive test for glycosides and saponins.

Antiproliferative activity
The result for antiproliferative activity of various solvent extracts of A. farnesiana pod on different cancer cell lines was tested. The n-hexane extract (S_1) inhibited chronic myelogenous leukemia (K562) by 64.1%, hepatocellular carcinoma (HepG2) by 10.81%, breast cancer (MCF-7) by 21.7 %, and colorectal adenocarcinoma (Colo 205) by 4.7%. DCM extract (S_2) inhibited chronic myelogenous leukemia (K562) by 49.3%, breast cancer (MCF-7) by 19.36%, colorectal adenocarcinoma (Colo 205) by 6.93%, and no inhibition against hepatocellular carcinoma (HepG2). Methanol extract (S_3) inhibited chronic myelogenous leukemia (K562) by 24.53%, hepatocellular carcinoma (HepG2) by 23.34%, and breast cancer (MCF-7) by 17.6%. The results are represented in Table 2.

DNA cleavage activity
The result for DNA cleavage activity by various solvent extracts of A. farnesiana pod demonstrates that n-hexane extract (S_1) cleaved the DNA at the concentrations tested; DCM extract (S_2) also cleaved the DNA at the concentrations tested, but a very prominent low molecular weight DNA band formation was seen with the increasing concentration of the sample. The methanol extract (S_3) has increased the DNA cleavage potential with an increase in the concentration of the sample. The fraction (S_4) has shown partial, but significant DNA cleavage as shown in Fig. 1 and in fraction (S_5) DNA cleavage is significant at 100 µg, but other two concentrations yielded less significant cleavage as shown in

Table 1: Phytochemical screening of various solvent extracts of A. farnesiana pod and fraction of methanol extract

<table>
<thead>
<tr>
<th>Test</th>
<th>Phytochemical test</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>Mayer’s test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wagner’s test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Ferric chloride test</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Alkaline test</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Glicosides</td>
<td>Killer-Killan's test</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Bromine water test</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Proteins</td>
<td>Xanthoprotein test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Steroids</td>
<td>Salkowski's test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Liebermann Burchard test</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>Ferric chloride test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Saponins</td>
<td>Foam test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

S_1 - n-hexane extract, S_2 - DCM extract, S_3 - methanol extract, S_4 - fraction of methanol extract (methanol soluble), and S_5 - fraction of methanol extract (methanol insoluble), A. farnesiana: Acacia farnesiana.
Fig. 2. Overall the results reveal that the DNA cleavage potential was found in the extracts of *A. farnesiana* pod. The activity exhibited by the extracts was found to be dose dependent. The fractions S_1 and S_2 were found to be less potential than their extracts even though they are partially purified fractions of methanol extracts. The methanol extract is worth investigating to further fractionate using methods adopted for compounds of specific classes which might increase the cleavage potential at very low concentration and isolate compounds which might be having better activity than the extract.

Table 2: Percentage inhibition of antiproliferative activity by different solvent extracts of *A. farnesiana* pods

<table>
<thead>
<tr>
<th>Cancer cell lines</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>Doxorubicin</th>
</tr>
</thead>
<tbody>
<tr>
<td>KS62 Average % in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>6.411779</td>
<td>4.939444</td>
<td>24.53099</td>
<td>95.57</td>
</tr>
<tr>
<td>Average % in</td>
<td>1.067045</td>
<td>3.575294</td>
<td>2.809822</td>
<td>2.2256</td>
</tr>
<tr>
<td>MCF-7</td>
<td>21.70372</td>
<td>19.36195</td>
<td>17.42746</td>
<td>97.61</td>
</tr>
<tr>
<td>Average % in</td>
<td>3.839193</td>
<td>2.922661</td>
<td>1.760558</td>
<td>2.189</td>
</tr>
<tr>
<td>Colo</td>
<td>4.744526</td>
<td>6.934307</td>
<td>NA</td>
<td>91.55</td>
</tr>
<tr>
<td>Average % in</td>
<td>3.171195</td>
<td>1.860956</td>
<td>1.8723</td>
<td>1.5699</td>
</tr>
<tr>
<td>HepG2</td>
<td>10.81081</td>
<td>NA</td>
<td>23.34152</td>
<td>97.355</td>
</tr>
<tr>
<td>Average % in</td>
<td>3.890994</td>
<td>1.890455</td>
<td>1.5699</td>
<td>1.5699</td>
</tr>
</tbody>
</table>

S_1: n-hexane extract, S_2: DCM extract, and S_3: methanol extract, NA: Not active, SD: Standard deviation, *A. farnesiana: Acacia farnesiana*

Fig. 1: DNA cleavage potential of various solvent extracts of *A. farnesiana* pods and its fraction S_3 against CT - DNA. (1-3) Sample S_3 at 25, 50 and 100 µg, (4-6) sample S_3 at 25, 50 and 100 µg, (7-9) sample S_3 at 25, 50 and 100 µg, (10-12) sample S_3 at 25, 50 and 100 µg

Fig. 2: DNA cleavage potential of fraction S_2. (1-3) Sample S_2 at 25, 50, and 100 µg. M - super mix DNA Ladder (Merck, Cat # MBD211), C - CT-DNA, S_2: n-hexane extract, S_3: DCM extract, S_4: methanol extract, S_5: fraction of methanol extract (methanol soluble), and S_6: fraction of methanol extract (methanol insoluble)

DISCUSSION

Cancer is a deadly disease which affects a considerable number of people worldwide. The ongoing research is to seek out effective treatments for cancer including the use of medicinal plants. This treatment makes use of the compounds naturally present in plants that are known to inhibit or kill carcinogenic cells [33]. The pytochemical screening of the plant showed the presence of flavonoids, steroids, and glycosides (Table 1). Flavonoids are effective in inhibiting xanthine oxidase, [34] cyclooxygenase [35] enzymes. The molecular mechanism may involve the inhibition of the pro-oxidant process that causes tumor promotion. Growth promoting oxidants and reactive oxygen species are the major catalysts of the tumor promotion and progression stages and therefore inhibit tumor cell proliferation. In addition, the mechanism of inhibition of polyamine biosynthesis can contribute to the antiproliferative activities of flavonoids. Ornithine decarboxylase is a rate-limiting enzyme in polyamine biosynthesis and is correlated with the rate of DNA synthesis and cell proliferation in several tissues. Several experiments show that flavonoids can inhibit ornithine decarboxylase induced by tumor promoters causing a subsequent decrease in polyamine and inhibition of DNA and protein synthesis [36-38]. Cardiac glycosides or steroids may bind to Na$^+$ and K$^+$ ion ATPase results in complex but well-documented changes in cell signaling events. The "signalosome" complex includes the enzyme, Na$^+$-K$^+$-ATPase as well as, phosphoinositide-3 kinase, and phospholipase each of which, in turn, sets into action complex signaling events that can result in tumor cell death through either apoptosis or autophagy-related mechanisms [39]. The evaluation is carried out by dissolving the extracts in DMSO (DMSO; not exceeding the final concentration of 0.01 %) and further diluted in cell culture medium. The antiproliferative response of the extract was assessed by MTT assay using doxorubicin as a standard drug molecule. The viability of the cells was determined using a spectrophotometer at 570 nm. The inhibitory concentration 50%, that is, the concentration of the extract required to inhibit cell growth by 50%, was determined. This study has assessed the antiproliferative and DNA cleavage potential of various extracts and fractions of *A. farnesiana* pod. The n-hexane (S_1), DCM (S_2), and methanol (S_3) have shown less significant activity against different cell lines that are chronic myelogenous leukemia (KS62), hepatocellular carcinoma (HepG2), breast cancer (MCF-7), and colorectal adenocarcinoma (Colo 205) cell lines but methanol and n-hexane have shown significant activity against chronic myelogenous leukemia (KS62), hepatocellular carcinoma (HepG2), and breast cancer (MCF-7). From the above result, we can predict that the inhibition of chronic myelogenous leukemia (KS62) and hepatocellular carcinoma (HepG2) by methanolic extract is found to be most effective and the inhibition of breast cancer (MCF-7) by N-Hexane extract is the best among the extracts screened. As the concentration of the sample increases, there is an increase in the cell growth inhibition for all the cell lines. The above findings indicate that the activity exhibited by the extracts might be because of their inhibitory effects of the enzymes by the phytochemicals. The potentiality of the extract still encourages for further investigation even though the extracts is having a moderate degree of activity.

DNA is the primary target molecule for anticancer therapies according to cell biology. Binding of peptides and small organic molecules to DNA will interfere with a number of processes like transcription and replication by considering this principle, various disorders such as cancer, and cystic fibrosis can be cured [40]. The literature survey reveals that the clinical efficacies of many drugs correlate with their ability to induce enzyme-mediated DNA cleavage. The loci present in the DNA are involved in various regulatory processes such as gene
expression, gene transcription, mutagenesis, and carcinogenesis [41]. In particular, designing of the compound having ability to cleave DNA is utmost important not only from the primary biological point of view but also in terms of photodynamic therapeutic approach to develop potent drugs [42]. The extracts which were found to be active in CT-DNA cleavage have been screened for their antiproliferative study. The DNA cleavage of various solvent extracts of A. farnesiana pod like n-hexane, DCM and methanol studied were actively cleaved, but fractions are not effective, hence the antiproliferative studies are conducted only for crude extract, viz., (S3, S4, and S5) represented in Fig. 1. The cleavage potential of the extract was examined by comparing the band appeared in control and extracts at 100 µg concentration. The DNA cleavage might be through the oxidation of deoxyribose by abstraction of sugar hydrogen or oxidation of nucleobases. Cleavage can occur both at the carbohydrate and at the nucleic base levels. This mechanism results in the damage of all four nucleobases or the deoxyribose sugar. In general, hydroxyl radical species of O2 (OH) are involved. The phytochemical screening of extracts and fractions indicated the presence of flavonoids, steroids, and glycosides which contain hydroxyl groups in their structures may initiate them for oxidative DNA cleavage. The cleavage mechanism occurs in three ways hydrogen abstraction, addition, and electron transfer. The general accepted mechanism of the DNA hydrolysis reaction is a nucleophilic attack [40]. Cleavage of DNA phosphate backbone: To form a five coordinate intermediate, this can be stabilized by the catalyst. Subsequent cleavage of either the 3' phosphoate (as seen is most often in enzymatic systems) or the 5'-phosphate results in a strand scission. After this nucleophilic attack, one group leaves as an alcohol [40]. Cleavage at deoxyribose sugar: If the oxidative cleavage occurs at the carbohydrate, abstraction of one hydrogen of deoxyribose can initiate the oxidative cleavage process. The oxidation at the nucleic base level occurs preferably at guanine because it's lower oxidation potential. Hydroxyl radical reacts with the heterocyclic bases in DNA by addition. In pyrimidines, OH adds to the C5 or C6 double bond leading to cleavage. In purines, the cleavage occurs when hydroxyl ion binds to the C8, C8a, and C7 [43]. The activity exhibited by the extracts and its fractions does not completely explain the mechanism of action. Based on the results obtained it can be stated that the flavonoids, steroids, and glycosides do contain OH functionality hence, might be involved in DNA cleavage as mentioned above. Further conclusive research needs to be carried out to attain final conclusion about the activity of DNA cleavage for A. farnesiana extracts.

CONCLUSION

The results obtained have shown that out of three extracts screened the two, viz., n-hexane and methanol of A. farnesiana pod have significant inhibition, and DCM has less significant on different cancer cell lines. The isolation of particular phytochemical from these two extracts can give the compound which is responsible for the inhibition of the three cancer cell lines chronic myelogenous leukemia (K562), hepatocellular carcinoma (HePG2), and breast cancer (MCF-7). The DNA cleavage is found to be effective with all the extracts, especially with S3 and S4 comparing to S5. S3 and S4. Thus, A. farnesiana pod is concluded to be significant cytotoxic against the four cell lines mentioned above by MTT assay, and the DNA cleavage by various extracts and the fractions are found to cleave significant at all concentrations.

ACKNOWLEDGMENT

The authors are thankful to the authorities of Kuvempu University, for providing necessary facilities to carry out this work, Professor Y.L. Krishnamurthy, Department of Applied Botany Kuvempu University, for authentication of plant material and one of the authors S. P. Sou Shekhar is also thankful to OBC Cell Kuvempu University, for awarding OBC fellowship to carry out Ph. D. programme.

REFERENCES

