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ABSTRACT

Objective: Neurocomputational modeling of visual stimuli can lead not only to identify the neural substrates of attention but also to test cognitive 
theories of attention with applications on several visual media, robotics, etc. However, there are many research works done in cognitive model for 
linguistics, but the studies regarding cognitive modeling of learning mechanisms for visual stimuli are falling back. Based on principles of operation 
cognitive functionalities in human vision processing, the study presents the development of a computational neurocomputational cognitive model for 
visual perception with detailed algorithmic descriptions. 

Methods: Here, four essential questions of cognition and visual attention is considered for logically compressing into one unified neurocomputational 
model: (i) Segregation of special classes of stimuli and attention modulation, (ii) relation between gaze movements and visual perception, (iii) mechanism 
of selective stimulus processing and its encoding in neuronal cells, and (iv) mechanism of visual perception through autonomous relation proofing.

Results and Conclusion: The contribution of this research modelling data of neurophysiological studies and provide collective evidence for a 
distributed representation of visual stimuli in the human brain. The outcome of this study will enable health institute in diagnosing brain disorders 
related with perception development
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INTRODUCTION

Visual perception is one of the fundamental tasks in machine vision. 
Many recognition algorithms have been proposed in computer science 
area [1-5]. While the central processing unit processing speed can now 
be reached at 4.5 GHz, the human brain has a limited speed of 100 Hz 
at which the neurons process their input. However, compared to state-
of-the-art computational algorithms for object recognition or visual 
perception, human brain has a distinct advantage in object recognition, 
i.e., human being can accurately recognize one from unlimited variety 
of objects within a fraction of a second, even if the object is partially 
occluded or contaminated by noises. Objects in real world space project 
natural color images on the retina in the human vision system, which 
has normal visual acuity and normal color vision. The information 
of stimuli is transformed to the visual cortex, in which a two-stream 
hypothesis is widely accepted [6]. The dorsal stream from V1 to 
intraparietal areas solves the problem of where the object is located. 
The ventral stream goes through V2 and V4 to inferior temporal areas 
solves the problem of what the object is. According to this hypothesis, 
temporal cortex is involved in object recognition task. Based on the 
cognitive mechanism in the human vision, this proposal presents the 
novel approach to model the cognitive phenomenon behind the visual 
perception and to utilize it for a neurocomputational cognitive model 
for object and scene recognition. Thus, it is much desired to explore 
computational cognitive models of how human brain recognizes objects 
to develop visual perception, in both areas of computer vision and 
cognitive computation.

Problem statement
To specify the mechanism of visual perception the, we make distinctions 
between object perception and object recognition. Object perception 
concerns how the shapes of objects are perceived by controlling stimuli 
presented to the sensory receptors. Object recognition, in addition 
to seeing an object, concerns about seeing an object as something 
that has been seen before. Thus, object recognition involves memory 
and learning. Based on this perspective, we study object recognition 

in the process of perception, memory, learning, and judgment [7]. 
There are many factors affecting the object recognition, including 
size, illumination, viewpoint, orientation, and so on. This proposal 
tends to study these factors and organize them into a single cognitive 
model after a systemic modeling of gaze-stimuli relationship and 
neurophysiological signaling, with collective evidence of distributed 
learning.

Based on the summarized cognitive model, the computational 
implementation of the cognitive model for object recognition of 
complex stimuli will be generated. A computational model of human 
cognition can be defined in several different senses. This work presents 
a model, which is computationally perceptive. By utilizing cognitive 
functionalities in the human brain, the proposed model is distinct 
from existing computing algorithms in computer science research 
field. Test datasets such as McGill 3D shape benchmark [8] will be used 
to demonstrate that the presented computational cognitive model 
outperforms state of the art computer vision algorithm. The study 
makes the following two contributions in this proposal:
•	 Systemically	study	psychological	and	neurophysiological	studies	with	

converging evidence, to uncover distributed learning of cognitive and 
neural mechanisms for object recognition in the human brain.

•	 Based	on	 these	cognitive	mechanisms,	a	 computational	 cognitive	
model for object recognition will be generated. The proposed model 
utilizes	distributed	 local	 features	which	are	defined	as	activation	
patterns and are similarity-invariant. By utilizing a learning process 
characterized by a reinforcement-learning model, the features are 
clustered into abstract representations stored in memory traces, 
which form the partial representations of the object.

The objective of this research is to carry out systematic neurocognitve 
experiments to model:
i. Segregation of special classes of stimuli and attention modulation;
ii. Relation between gaze movements and visual perception;
iii. Mechanism of selective stimulus processing and its encoding in 

neuronal cells;
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iv. Mechanism of visual perception through autonomous relation 
proofing.

Based on the above experiments, the data generated will be modeled 
into single modified neurocomputational model of cognition. The 
neurocomputational model will be used to generate an algorithmic 
visual perception framework for solving real-world problems 
associated with machine vision.

Related work
The mysteries of the human mind have attracted considerable attentions 
in natural sciences. For nearly half a century, cognitive science has 
emerged as a new discipline that focuses on the various scientific issues 
of the human mind. Cognitive science is the interdisciplinary scientific 
study of human perception and thinking process, which includes all of 
cognitive processes from sensory input to complex problem solving, 
individual human being to the intelligent activity of human society, 
as well as the nature of human intelligence and machine intelligence. 
Cognitive science research not only promotes the understanding of 
the nature of the human mind but also promotes the development 
of modern science and technology. Recently, computer science has 
become increasingly prominent in cognitive science, and the knowledge 
of theoretic computer science provides a solid basis for considering the 
functional architecture of a computational brain [9].

The visual media, including digital images, video and three-dimensional 
models, contains superfluous visual information. Since the intelligent 
processing of visual media utilizes a combination of cognitive 
mechanism and computation, visual media is a good example to 
integrate cognitive mechanism into an intelligent computation [10-12]. 
Marr’s visual computing theory is the most representative cognitive 
computing model, which plays an important role in guiding intelligent 
computer image processing [13]. The algorithm Marr proposed was not 
only in line with the results of neurophysiology experiments conducted 
in primate animals, but also explains the characteristics of the human 
visual system [14]. Marr’s model was the most successful model that 
combined human cognitive mechanisms and computer algorithms. 
However, with the rapid development of science and technology, 
the pending visual media information from the Internet is massive, 
unordered, uncertain, and interactive in social groups. Thus, it is 
imperative to propose new theories and methods to process massive 
amounts of visual media.

Over the past decade, a large number of neurophysiological and 
cognitive neuroscience researches have provided in-depth and 
detailed experimental data and theoretical models to reveal the 
brain’s information processing mechanisms. Because of the complexity 
of information processing in the human brain, cognitive scientists 
recognize that computational models can enhance our understanding 
of the cognitive system functions and provide a theoretical foundation 
and technical support [15]. For example, science, nature, and neuron 
recently published a series of studies [16-21] that showed the role of 
the bottom-up and top-down visual attention selection in the process 
of human visual perception. Different neural pathways, as well as 
corresponding computational models that successfully simulated their 
neural mechanisms, were discussed. Further neurophysiology research 
and computational modeling research indicated that the perceptual 
significance of stimuli depends on the background information in 
the environment [22]; background information is also shown to be 
very important in object recognition process [23]. Poggio and Bizzi 
proposed a systematical computational model based on the perception 
principles of biological visual system [24-26]. However, the researches 
on the neural mechanisms of visual information processing still lack 
a quantifiable cognitive model and a corresponding mathematical 
theory to explain the internal mechanism clearly. All of these problems 
obstruct the practical applications in engineering. How could cognitive 
mechanisms and computational models simulating human cognitive 
functions be applied to the intelligent sensing and machine perception 
in the natural environment? How could they be applied to solve 

practical problems of intelligent computing? All of these questions 
would be answered by the fundamental scientific exploration of 
intelligent computing.

The past studies include exploring an uncharted area of modeling 
various aspects of cognitive function for facial recognition information 
in identifying individuals [26]. The objective was to identify the 
factors from parahippocampal place area (PPA) with means of a 
computational method that trigger the recognition process, which 
constitutes facial encoding by measuring the selectively responses in 
PPA to images of objects. The synthetic intelligent computer model is 
used to enable categorization of feature selectivity in brain patterns 
and simultaneously training it as a building block for the visual 
system, which mimics and categorized shape selective responses 
in PPA. Another work includes the exploring the mechanism of 
interconnected neural networks by plasticity mechanisms to bring out 
intelligence, consciousness, and emotions by a collective firing of sets 
of neurons operating at different time delays and oscillations [27]. 
The nature of our study was to computationally test a mathematical 
model to mimic neurological events in general and provides a 
theoretical and experimental framework that links neural function 
to model-based learning and theory of cognitive control; which in 
turn has bridged the junction of biology and computer science. This 
had allowed us to sculpt such neural networks into effective data 
processor. Moving further in our past research accomplishments, we 
have shown the neural mechanism with which complex computing 
problems deals with multidimensional signals is usually experienced 
as unitary precepts [28]. A neuronal spike pattern is used to determine 
the synchronization dynamics of neuronal activity for computer-
generated color patterns in aid of synchronization of neuronal 
activity for memory formation in autistic subjects. In particular, this 
gives functional organization of neuronal circuits and interesting 
relationships between these oscillations and interneuronal coupling 
that suggest an enhanced mechanism for effective learning of visual 
patterns by autistic brain.

METHODOLOGY: GLOBAL AND NODAL PROPERTIES OF 
COACTIVATION AND CONNECTIVITY NETWORKS FOR COGNITIVE 
VISION AND FEATURE LEARNING

The coactivation network was topologically complex in several ways. 
The nodal degree distribution was fat-tailed with high-degree hub 
nodes to be located in proposed polymorph neural network using a 
sequence of information to excite the necessary regions and assess the 
information in an associative form (Fig. 1). This enables the machine 
not only to learn, but it enables it to embark the cross relationship 
between various data for prediction or simulation based logical 
conclusion. Physically, this topology was embedded parsimoniously, 
in terms of the connection distance between coactivated nodes 
(Fig. 2). Most connections or edges were separated by short sequence 
of excitatory data, significantly shorter than random networks; 
with p<10−3 in the permutation test. Relatively few edges were long 
distance, and these were often interhemispheric projections between 
bilaterally homotopic regions where 14% of longest connections 

Fig. 1: Structural network of cognitive vision based learning 
mechanism in the proposed model
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(defined as top 10 percentile) were homotopic; significantly more 
than random.

The artificial neural rule-based system used in the experiment employs 
the concept of neural network as well as fuzzy logic. The neural network 
used in work contains an input layer and an output layer [29,30,31]. The 
number of neurons in hidden layers decides the objects to be classified. 
Output layer of the network is used to replicate the recognition process 
by carrying out the same task as the similar data to the subject is fed 
into the system. At time, each of the two elements of the focusing 
factors is processed within the layers (using matrix representation) 
that are related to the classes of rectilinear and curvilinear objects, and 
the output is manifested in the form of the step-by-step identification 
process. The fuzzy learning mechanism is used between the weights 
of the input and middle layer to detect how often the outputs win the 
competition. Multilayer feed forward neural network is used in the 
first step during examination. The input layer of neural network has M 
number of neurons, and the hidden layer has Ng neurons. The output 
layer of the network has N neurons. Training of artificial neural network 
is done using Backpropagation (BP) algorithm as modeled below:
•	 Step	1:	Develop	a	network	with	suitable number of neurons and 

other parameters as per the value of I and M supplied.
•	 Step	2:	Analyze	input	image	and	map	all	detected	and	segmented	

objects and numbers into linear arrays.
•	 Step	3:	Read	desired	output	converting	each	segmented	object	to	a	

binary unicode value. Characters are individually stored.
•	 Step	4:	Generate	arbitrary	weights	within	the	interval	[0,1]	and	assign	

to all neurons in hidden layers and also output layer. Maintain a unity 
value weight for all neurons of the input layer.

•	 Step	5:	For	each	segmented	object:

i. The output of the feed forward network is calculated.
ii. A comparison is made with the desired output corresponding 

to the symbol and computer error.
iii. Errors are propagated back across each neuron in previous layers 

to adjust the weights.
•	 Step	6:	The	training	dataset	I	is	fed	to	the	classifier	and	determine	

BP error by:

BPerr=Ctar-Cout (1)

Where Ctar is the desired target output, and Cout is the actual network 

output. The value of Cout is determined as: ( ) ( ) ( ) 
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Where w2r1 is the weight of the connection from the 2rth input element 
to the 1th hidden unit. equation 5.18 and equation 5.19 are activation 
functions of output layer and hidden layer respectively.

•	 Step	7:	Adjust	the	weights	of	all	neurons	by	w	=	w+∆w,	where	∆w	
is	the	change	in	weight	estimated	as:	∆w	=	γ.Y2.BPerr,	where	ᵧ	is	the	
learning rate. In general, the value of learning rate is between 0.2 
and 0.5.

•	 Step	8:	The	hidden	layer	outputs	are	computed	as:
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Where xi, the net input to the ith input unit; Oj
h , the output of the jth 

hidden layer neuron and Wj
i  is the weight on the connection from the 

ith input unit to the jth hidden unit. The actual output kth hidden layer is:
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Where h
kO  is the actual output for the kth unit and W

k
j  is the connection 

weight from the jth hidden unit to kth output unit. The error term 
between output layer neuron and hidden layer neuron is:

( )( )δo
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Where Tk is the target output for the kth output unit and δk
o  is the error 

term for the kth output unit. δj
h  is the signal error for the jth hidden unit, 

given as:

( )δ δ∑
p

h o
j j j k jk

k=1

  =O 1-O ( W )

 (7)

The weights on the output layer are adjusted by:

( ) ( ) µ δo o o
jk jk k j	W t+1 =W t +( . .O )

 (8)

Fig. 2: Stimuli results for arrays of rectilinear shapes with rounded and negative images while depicting the eye gaze density for each of 
the images
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Where	Ƞ	 is	 learning	rate	of	output	 layer.	The	weights	of	hidden	 layer	
neurons are adjusted as:

( ) ( )h o o
jk ij k i W t+1 =W t +( . .X )η δ

 (9)

Final error is calculated (if (Tk-Ok)	≥0):

( )2k kT -Oo
k k k=(1+e )O .(1-O )δ  (10)

Otherwise

δk
o T -O

k k=-(1+e )O .(1-O )k k

2( )
 (11)

Now, the rules are generated in the form of fuzzy error classifiers and 
these fuzzy rules are generated to recreate the recognition process and 
train the artificial neural system for visual recognition. Major steps of 
the system are:
•	 Repeat	the	process	until	the	BP	error	is	minimized	as	BPerr <0.1.
•	 Check	for	next	segmented	objects	and	repeat	until	recognition	of	all	

objects is over.
•	 The	average	error	is	computed	for	all	object	which	are	in	correlation	

with other segmented ones a supposed to be <40% the total error.
•	 Finally,	the	above	process	has	to	be	repeated	till	specified	number	

of epochs.
•	 Once	error	threshold	is	reached,	the	object	recognized	is	displayed.

Although the network cost was overall low, as measured by the 
distance of connections, the network topology still managed to balance 
integration and segregation between all topological artificial neural 
regions: The clustering of the network threshold at sparse levels was 
much higher than random, while retaining a similar path length, i.e., it 
was small world. The illustration of the so formed weighted perception 
values from distributed stimuli is shown in Fig. 3. In all these respects, 
the organization of the coactivation network was convergent with 
properties of a comparable functional connectivity network generated 
from resting-state of excitatory sequences. As known from prior study, 
and reproduced here, a recognition state polymorph neural networks 
for feature extraction and encoding of it for both the grayscaled and 
negative images (which is an example of small world encoding), with 
fat-tailed degree distributions and parsimonious distance distributions.

Thus, it seems reasonable to say that the proposed research has firm 
prominence with its scope fulfillment and will be relatively specialized 
for action, the occipital module for perception, and the default-
mode module for emotion. Action and cognition tasks accounted for 
approximately the same proportion of intramodular edges in the other 
already cited software AI modules (96.6% and 98.2%, respectively), and 
therefore we described it as specialized for other executive functions. 
This research assumes the development of a prototype of cognitive 

vision based visual systems, which shall boost the application of open 
sourced Intelligent Framework.

RESULTS AND DISCUSSION

As shown in Fig. 2, the dotted region of the selectivity of the geometric 
shapes in the brain regions is represented for the magnified antirational 
responses resultant from rectilinear versus circular visual object 
stimuli.

Thus, from this viewpoint, the procedurally created viewership of 
the certain images with specific properties of being rectilinear or 
curvilinear or negative object images that there is significant bias for 
the rectilinear images than with the circular or rounded or curvilinear 
images. Finally, the negative images did not preserve the object size thus 
having a hard time recognizing those images by the subject. The imaging 
results demonstrate marked neural response which tends to serve to 
complement the behavioral findings of the significant restoration of the 
ability to recognize for such visual images. Altogether, these causes to 
give an explanation on the long-standing question of why photographic 
negatives are hard to recognize. This result suggests that the difficulty in 
analyzing negative images is driven in significant parts by dissolving the 
geometric shapes in 2D contrast polarity relations between a essential 
regions of the face defined by a combination of rectilinear and circular 
shaped objects. The special significance of eye gazes is that it perceives 
objects differently in the collection of segmented order (for a fractal 
image) overlaid in the neighborhood which gives out the data from the 
same experiment conducted with different diameters of the circular 
aperture (Fig. 2). Thus, this finding explains the perceptual significance 
of reconciliation of photometric relationships with human’s ability to 
identify and recognize line drawings of faces rather easily than circular 
ones. Evidently, line drawings mainly contain contour information and 
very little photometric information which is held responsible to define 
luminance relation. However, when it comes to facial recognition or of 
fractal images, the density and weight of the lines affect the relative 
intensity of different regions. Thus, the contour lines included in such 
depictions corresponds not only to low-level edge maps instead it 
embodies the images’ photometric structure. It is the skillful inclusion 
of these photometric cues by the overlapping of contour lines which 
in our experiment make the human subjects more prone to easily 
recognize line-drawings which is latter replicated by the computer 
algorithm as shown in Fig. 3.

This research work addresses the intelligent processing of massive 
amounts of visual media and makes the processing of perception, 
memory, and judgment (PMJ) in cognition correspond to the steps 
of analysis, modeling, and decision in computing, respectively. Here, 
the computational cognition model of PMJ is proposed, consisting of 
three stages and three pathways integrating cognitive mechanism and 
computing in its framework based on the basic mechanisms of human 

Fig. 3: (a) Formation of patterns with the perception of object based on the proposed model, (b) Region of input responses for perception 
development from polymorph neural networks

a b
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cognition. In the framework of PMJ model, the important cognitive 
mechanisms of human information processing were studied on mass 
visual media, build a neural network model based on PMJ model, 
achieve a quantitative description of the visual cognition load, and 
further explore the mathematical formulation of the model. Finally, 
the model will be applied in the field of affective forecasting based 
on Internet images and image retargeting. PMJ model would provide 
the realizable cognitive basis for improving the efficiency of mass 
visual media processing from the Internet and realizing visual media 
interaction, integration, and presentation in accordance with human 
perception and cognition. Furthermore, the model would effectively 
promote cognitive computing from qualitative research to quantitative 
research, and enhance the research level of intelligent processing of 
Internet visual media.

Computation a lists from cognitive psychology proposed that cognition 
is a kind of computational form [32], and the primary function of the 
brain is to process information [22]. The received information can 
be represented in the brain. If such a representation of the brain is 
absent, it is impossible for the brain to communicate with the world [1]. 
Representations of the brain are functioning homomorphisms; that is, 
there are structure-preserving mappings (homomorphisms) from states 
of the outside world (the represented system) to symbols in the brain 
(the representing system) [9]. Symbols are the physical manifestation 
of computation and representation in cognitive processes. They 
carry information and embody the results of those computations [9]. 
Therefore, it is essential to understand that the symbols of the brain 
are physical entities and cognition is the computation of symbols 
and the information processing of the brain [9]. Good symbols in a 
computational system must be distinguishable, constructible, compact, 
and efficacious [9].

The computability of cognition could bind the mechanism of human 
cognition and computational models realized by computers. It is the 
theoretical foundation for the research in which human behaviors 
could be explained by computational processes, and the basic 
principles of cognitive modeling for instructing engineered computing 
(categorization, identification, and encoding) based on cognitive 
hypotheses. The computability of cognition not only makes the 
quantification of cognitive properties possible but also serves as the 
basis for quantified data to be computed in the computing processes of 
modeling and judgment.

CONCLUSION

The contribution of this research is of two folds. Firstly, the 
systematic cognitive experiments are designed for modeling data of 
neurophysiological studies, which provide collective evidence for 
a distributed representation of visual stimuli in the human brain. 
Secondly, a computational technique to model and simulate the 
distributed mechanism of visual learning is implemented. Research 
outcome presented in this study will be used for developing better 
artificial intelligence to solve societal problems such as AI for 
identifying theft, mugging, and other criminal actions from surveillance 
feed. The outcome has enabled us to develop a cognitive model of 
visual computing to understand the information processing for shape 
selective objects. The model will be used in conjunction with several 
health institutes in diagnosing several brain disorders, which are 
associated with perception development.

REFERENCES

1. Horn B. Extended Gaussian images. Proc IEEE 1984;72(12):1671-86.
2. Johnson A, Hebert M. Using spin images for efficient object 

recognition in cluttered 3D scenes. IEEE Trans Pattern Anal Mach 
Intell 1999;21(5):433-49.

3. Elbaz A, Kimmel R. On bending invariant signatures for surfaces. IEEE 
Trans Pattern Anal Mach Intell 2003;25:1285-95.

4. Funkhouser T, Min P, Kazhdan M, Chen J, Halderman A, Dobkin D, 

et al. A search engine for 3D models. ACM Trans Graph 2003;22:83-105.
5. Liu YJ, Chen ZQ, Tang K. Construction of iso-contours, bisectors, and 

voronoi diagrams on triangulated surfaces. IEEE Trans Pattern Anal 
Mach Intell 2011;33(8):1502-17.

6. Goodale MA, Milner AD. Separate visual pathways for perception and 
action. Trends Neurosci 1992;15(1):20-5.

7. Fu X, Cai L, Liu Y, Jia J, Chen W, Yi Z, et al. A computational 
cognition model of perception, memory, and judgment. Sci China Inf 
Sci 2013;56(5):DOI: 10.1007/s11432-009-0095-8.

8. McGill 3D Shape Benchmark. Available from: http://www.cim.mcgill.
ca/~shape/benchMark.

9. Gallistel CR, King A. Memory and the Computational Brain: Why 
Cognitive Science Will Transform Neuroscience. New York: Blackwell/
Wiley; 2009. p. iiv-xvi.

10. Hu SM, Chen T, Xu K, Cheng MM, Martin RR. Internet visual media 
processing: A survey with graphics and vision applications. Vis Comput 
2013;29(5):393-405.

11. Hulusic V, Debattista K, Aggarwal V, Chalmers A. Maintaining frame 
rate perception in interactive environments by exploiting audio-visual 
cross-modal interaction. Vis Comput 2011;27(1):57-66.

12. Vazquez PP, Marco J. Using normalized compression distance for 
image similarity measurement: An experimental study. Vis Comput 
2012;28(11):1063-84.

13. Eysenck MW, Keane MT. Cognitive Psychology: A Student’s 
Handbook. 6th ed. New York: Psychology Press; 2010. p. 1-50.

14. National Institute on Drug Abuse. Computational neuroscience at the 
NIH. Nat Neurosci 2000;3:1161-4.

15. Buschman TJ, Miller EK. Top-down versus bottom-up control of 
attention in the prefrontal and posterior parietal cortices. Science 
2007;315(5820):1860-2.

16. Navalpakkam V, Itti L. Search goal tunes visual features optimally. 
Neuron 2007;53(4):605-17.

17. Katsuki F, Constantinidis C. Early involvement of prefrontal cortex in 
visual bottom-up attention. Nat Neurosci 2012;15:1160-6.

18. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven 
attention in the brain. Nat Rev Neurosci 2002;3(3):201-15.

19. Zanto TP, Rubens MT, Thangavel A, Gazzaley A. Causal role of the 
prefrontal cortex in top-down modulation of visual processing and 
working memory. Nat Neurosci 2011;14(5):656-61.

20. Tomita H, Ohbayashi M, Nakahara K, Hasegawa I, Miyashita Y. Top-
down signal from prefrontal cortex in executive control of memory 
retrieval. Nature 1999;401(6754):699-703.

21. Itti L, Koch C. Computational modelling of visual attention. Nat Rev 
Neurosci 2001;2(3):194-203.

22. Cox D, Meyers E, Sinha P. Contextually evoked object-specific 
responses in human visual cortex. Science 2004;304(5667):115-7.

23. Kouh M, Poggio T. A canonical neural circuit for cortical nonlinear 
operations. Neural Comput 2008;20(6):1427-51.

24. Poggio T, Bizzi E. Generalization in vision and motor control. Nature 
2004;431(7010):768-74.

25. Hung CP, Kreiman G, Poggio T, DiCarlo JJ. Fast readout of 
object identity from macaque inferior temporal cortex. Science 
2005;310(5749):863-6.

26. Rai A. Computational modeling study of synfire chains from multiple 
plasticity mechanisms for model development at neural level: 
Introducing an evolving digital micro-brain. Res Rev J Comput Biol 
2014;3(2):9-15.

27. Rai A. Characterizing face encoding mechanism by selective object 
pattern in brains using synthetic intelligence and its simultaneous 
replication of visual system that encode faces. Res Rev J Comput Biol 
2014;3(2):9-15.

28. Rai A. Parsing of sensory perception in oscillatory networks through 
cross frequency coupling of memory synchronization: Revelation of 
enhanced learning by autistic brain. Res Rev J Neurosci 2015;4(2):9-
14.

29. Rai A. Shell implementation of neural net over the UNIX environment 
for file management: A step towards automated operating system. 
J Oper Syst Dev Trends 2014;1(2):10-4.

30. Rai A. An introduction of smart self-learning shell programming 
interface. J Adv Shell Program 2015;1(2):3-6.

31. Rai A. Dynamic pagination for efficient memory management over 
distributed computational architecture for swarm robotics. J Adv Shell 
Program 2014;1(2):1-4.

32. Pylyshyn ZW. Computation and Cognition: Toward a Foundation for 
Cognitive Science. Cambridge: The MIT Press; 1984. p. 1-16.


