
Special Issue (April)
Online - 2455-3891 

Print - 0974-2441

Advances in Smart Computing and Bioinformatics

TOUCH-FREE USER INTERFACE FOR AUGMENTED REALITY SYSTEMS

ANKUSH RAI*, JAGADEESH KANNAN R
School of Computing Science and Engineering, VIT University, Chennai, Tamil Nadu, India. Email: ankushressci@gmail.com

Received: 13 December 2016, Revised and Accepted: 03 April 2017

ABSTRACT

Augmented reality is the upcoming field of research and is often suffer from the current form of user interface. In this study, we present touch-free 
user interactive system for augmented reality applications to carry out multi-task operations. We validated the efficacy of the method based on the 
performance of several users while carrying out the complex task in our sample augmented reality game.

Keywords: Multimedia, Interactive graphical user interface, Automation.

INTRODUCTION

In human-to-computer interaction, interacting for information about 
tangible objects within the computing media is usually accomplished by 
making indirect visual references to it. On the other hand, the human-
to-human interaction with information is accomplished by the visual 
references which are addressed as the perception. Therefore, in this study, 
we meant to adjoin the two phenomenon of interaction adding depth to 
the graphical user interface (GUI) elements. Giving visual commands, 
finding information or issuing commands involving tangible objects can 
also be naturally accomplished by making similar visual references as 
found appropriated by the user. Unlike in system dependent on command 
line interface (CLI), a GUI has several test operations to successful pass 
on [1]. Thus, the testing techniques mainly employed for testing CLI 
programs suffer from scaling problems such as finite state machine when 
applied in the world of GUI’s [2,3]. Therefore, it is required that a different 
approach is to be used for testing GUI’s from what it is employed for CLI 
technique [4]; which in turn involves usage of a planning system [5,6]. 
Although employing the technique of capture-playback, functions well in 
CLI world but often are prone to problems which are quite significant 
when it is implemented for a GUI system [7]. Accordingly, to eliminate 
such problems, there were two ways mainly used by the testers; either 
the testers use data collected from GUI interaction through the underlying 
windowing system [8], or to build the driver into the GUI such that the 
commands or events can be dispatched from other programs [9].

However, in the past, there is a field namely gesture control attempts 
made to achieve this through various computer vision algorithm over 
various platforms but requires hefty computing even for a simple 
job of identifying the gesture from real world to the trained gesture 
configuration from artificial neural networks or other various pattern 
recognition algorithms which limits its real-time application. In some 
cases, few device manufacturing companies have developed many-core 
mobile computing devices where such gesture control features are 
provided; even though, it is not a cost-effective method cost more battery 
usage with delayed interactive actions. Thus, there is a need to eliminate 
such limitations; therefore, we have used the attribute based level 
adaptive thresholding algorithm for object extraction (ABLATA) [10]; 
which is implemented in augmented form with the proposed 
evolutionary algorithm to match up with the user defined motion inputs 
and classify to learn and imitate the process simultaneously.

MOBILE EVOLUTIONARY ALGORITHM FOR EVASIVE INTERACTIVE 
GUIS

Algorithm

Input: Two images (a) Instance of window’s workspace W (b) instance 
of user’s end U

Output: Action sets ASi and matrix model of tree of actions Mx

Step 1: Perform ABLATA over U and W; such hat, we get LU and LW which 
are the set of levels from U and W, respectively.

Step 2: Compute the pointing correlation state P as

P=
1

L
S (t ,f ,f ) S'

N
p

L

p

L

p ,p i 1 2

p

L

p ,p

t

W

2

U

1 2

2

U

1

− − −

∑ ∑ ∑
















1 1 1

22
(t ,f ,f )i 1 2

















where, LN are the universal set of level for the images, pi and p2 are 
the adjoint pixels intersection with the levels LW and LU respectively, 
S’p1,p2 and S’p1,p2 are the sets of pixel density constraint layout for the 
pixel positioning with its patterning saved in levels and between 
its intersection of adjoint pixels and the super positioned pixel 
density layout of differing state at the users instance of the image U. 
Furthermore, ti is the collection of patterns for the weighted superposed 
state Pc (Initially its value is set to 0), f1, f2 are the two delay frames with 
a minimal time delays ti [11-13].

Step 3: For pi+1 evaluate
P→Pc

Step 4: Calculate the tree of action based on continuous feedback loop

M =

t

P

P

P

=AS

t

P

P

P

=AS

t

P

P

P

x

1

1

4

8

1

2

3

9

6

2

3

2

5

7




























































































=AS

:

t

P

P

P

=AS

3

i

0

5

c

i
























© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. 
org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2017.v10s1.19683

Full Proceeding Paper



277

Special Issue (April)
 Rai and Kannan 

Where, ASi is the automated classified action sets for example: Dragging, 
dropping, closing, etc.

Step 5: Repeat step 1-4, update Pc.

CONCLUSION

Fig. 1a gives the summarized the analysis of the performance result for 

Fig. 1b: Flow chart of mobile evolutionary algorithm for evasive interactive graphical user interfaces

the testable complex operations (Represented by triangle, and order 
of execution by numeric 1 and 2, respectively) performed over the 
proposed GUI algorithm and data flow process (Fig. 1b). Note: F is not 
testable operations. This paper presented and revealed a dynamically 
adaptive approach for automotive interaction with GUIs and offering 
various benefits and capabilities. We conclude by mentioning future 
offering by the proposed work.

Fig. 1a: The performance test of graphical user interface visual behavior under various action sets



278

Special Issue (April)
 Rai and Kannan 

Many users prefer a personalized experience we have successfully 
offered it with satisfaction and speed of performing tasks on computing 
device. This is the robust method to the present data and provides a 
advantageous utility to the users employed in environments in highly 
colonized work environments such as flight control and management 

Fig. 2: Sample augmented reality game controlled through the 
proposed technique

Fig. 3: Human performance test against the colonized job 
processing done over the proposed graphical user interface

unit, scientific laboratories, nuclear Power Stations and in Conferences 
or Academic/Business presentations. This automation is less affected 
by variations when users are entitled to work in crowded areas (as 
shown in Fig. 2). The operational performance is shown in Fig. 3. 
The users can save the template of the trained GUI and can forward 
it to their other mobile devices, such that this will be uninfluenced by 
theconversion function to map patterns between themes or to require 
users to normalize the execution environment by switching to the 
default workspace.

REFERENCES

1. Memon AM, Pollack ME, Soffa ML. Using a Goal-driven Approach 
to Generate Test Cases for GUIs. ICSE ‘99 Proceedings of the 
21st International Conference on Software Engineering; 2002.

2. Clarke JM. Automated test generation from a behavioral model. In: 
Proceedings of Pacific Northwest Software Quality Conference. IEEE 
Press, May; 1998.

3. Esmelioglu S, Apfelbaum L. Automated test generation, execution 
and reporting. In: Proceedings of Pacific Northwest Software Quality 
Conference. IEEE Press, October; 1997.

4. Howe A, von Mayrhauser A, Mraz RT. Test case generation as an AI 
planning problem. Autom Softw Eng 1997;4:77-106.

5. Memon AM, Pollack ME, Soffa ML. Hierarchical GUI test case 
generation using automated planning. IEEE Trans Softw Eng 
2001;27(2):144-55.

6. Koehler J, Nebel B, Hoffman J, Dimopoulos Y. Extending planning 
graphs to an ADL subset. Lect Notes Comput Sci 1997;1348:273.

7. Kepple LR. The black art of GUI testing. Dr. Dobb’s J Softw Tools 
1994;19(2):40.

8. Hammontree ML, Hendrickson JJ, Hensley BW. Integrated data 
capture and analysis tools for research and testing on graphical user 
interfaces. In: Bauersfeld P, Bennett ,Lynch G, editors. Proceedings of 
the Conference on Human Factors in Computing System. New York, 
NY, USA: ACM Press; 1992. p. 431-2.

9. Kasik DJ, George HG. Toward automatic generation of novice user 
test scripts. In: Tauber MJ, Bellotti V, Jeffries , Mackinlay JD, Nielsen 
J, editors. Proceedings of the Conference on Human Factors in 
Computing Systems: Common Ground. New York: ACM Press; 1996. 
p. 244-51.

10. Rai A. Attribute based level adaptive thresholding algorithm for object 
extraction. J Adv Robot 2014;1(1):29-33.

11. Rai A. Shell implementation of neural net over the UNIX environment 
for file management: A step towards automated operating system. J 
Oper Syst Dev Trends 2014;1(2):10-4.

12. Rai A. Air computing: A parallel computing module for offloading 
computational workload on neighboring android devices. Recent 
Trends Parallel Comput 2015;1(3):10-3.

13. Rai A, Sakkaravarthi R. Distributed learning in networked controlled 
cyber physical system. Int J Pharm Technol 2016;8(3):18537-46.


