INTRODUCTION

Anemia, a common associate of adolescence particularly in women due to physiological changes, continues even in adulthood. The increased demand during pregnancy and lactation, if not met, can result in anemia, and a well-known fact supported by many studies has made the physicians to shift their focus on this group. Identifying this silent nutritional deficiency in women of reproductive age is important not only for the uneventful pregnancy and healthy offspring but also for maintaining the health and well-being to maintain and improve the work efficiency and quality of life [1].

Supplements are provided during the growth period in children and early adolescence through a government-initiated project in schools, aims to tackle this condition in this age group. In spite of continuous efforts by the health-care providers and government initiatives in India, it is saddening that one in every two women still suffers from anemia [2]. According to the World Health Organization (WHO), the highest number of individuals affected by anemia is observed in non-pregnant women aged 15-49.99 years [3].

The most neglected is the non-pregnant women population in their third decade as they are not aware of their anemic status. Those who are away from their home, either for academic or career purpose, depend on other sources of food such as cafeteria, mess, and bear the brunt most. It is known the fact that medics due to their hectic work and academic workload do not have much time to take care of their nutritional needs and other sources of food such as cafeteria, mess, and bear the brunt most. It is known the fact that medics due to their hectic work and academic workload do not have much time to take care of their nutritional needs. Although the diagnosis of anemia is simple, it goes unnoticed for a long time due to its non-specific clinical signs and lack of testing even among medical students. Anemia is associated with a low work capacity, as well as lasting effects on learning and cognitive function, attention, behavior and growth, identification of the disease, and contributing factors are a first step toward its management. Hence, we conducted this study to determine the prevalence of anemia among our PG women medics.

METHODS

An observational, analytical study was conducted to determine the proportion of female medical students with anemia in a medical college from coastal South India, after obtaining the Institutional Ethics Committee's approval and written informed consent from the participants. Our primary objective was to estimate the extent of anemia in women PG medical students and the factors contributing to it.

Participants were female PG medical students belonging to first, second, and third year of postgraduation from our institution, who gave their written consent. We also excluded those with bleeding disorders, a history of hematological disorders (i.e., thalassemia trait, sickle cell trait, and malignant conditions), who underwent major surgery in the recent past, and those who were pregnant/lactating mothers.

We captured details of history and findings of general examination on a pre-determined and pretested proforma. The hemoglobin (Hb) estimation was performed by automated method and results interpreted as per the WHO criteria [5]. Anemia is established if the Hb level is below the cutoff points as recommended by the WHO.

Statistical analysis

Data were captured using Microsoft Excel worksheets (2010) and analyzed. Results were expressed as frequency, percentage, range,
RESULTS

We enrolled 100 women medical PG students aged 23-29 years with a mean±SD age of 25.92±1.5 years and body mass index (BMI) of 21.51±2.97. Of 44 (44.0%) anemic students, 21 (47.73%) belonged to the 3rd year postgraduation. Only 16 students were underweight, eight in anemic and non-anemic group each (Table 1). None had any history of occult bleeding or abnormal bleeding tendency. Twenty-four (24.0%) students had taken anthelminthic treatment within 6 months of enrollment.

Mean Hb levels of the study group were 11.54±1.21 g/dL with a range of 9.5-14 g/dL (Table 2). There was a statistically significant difference (p<0.05) between mean Hb level of the anemic students (Hb - 10.35 g/dL) and non-anemic individuals (Hb - 12.49 g/dL).

Dietary habits

A questionnaire was used to gather information regarding the dietary habits of the female PGs that included, dietary habits (type of food and extra meal) and beverages. There were 19 (19.0%) vegetarians, of whom 11 (57.9%) were anemic. Remaining 81 were mainly non-vegetarians who consumed either fish, meat, or egg once a day. Only 33 (40.74%) were anemic among non-vegetarians. There was no statistical significant difference (p>0.05) in the occurrence of anemia among vegetarians (mean±SD Hb = 11.21 g/dL ± 1.11) and non-vegetarians (mean±SD Hb = 11.61 g/dL ± 1.23).

Thirty-six (36.0%) participants consumed extra meals between their three main meals. There were 17 (17.0%) individuals who drank tea within one hour of a meal as a habit. Although eight (50.0%) of them were anemic, there was no statistical significance (p>0.05) in Hb level/ anemia in these groups (Table 3).

Effect of menstruation on hemoglobin status

There was no statistically significant difference (p>0.05) in the duration of menstruation between non-anemic (4.12±0.82 days) and anemic students (4.25±0.61 days). Heavy flow was noted in 37 (37.0%) subjects as reported to pass clots. There was no statistically significant association (p>0.05) between anemia and heavy flow (Table 3).

DISCUSSION

Anemia, humankind’s oldest disease, caused by nutritional deficiency, still remains a global issue though causes and severity vary from developed to developed and underdeveloped countries. With the advent of time, many fatal diseases have been identified, yet anemia is a concern to the physicians particularly when occurs in women. Increased demands during adolescence due to physiological changes and during pregnancy and lactation make the young women more vulnerable. In addition, food faddism and avoidance of particular food group are common in young women which increase the risk of micronutrient deficiencies [6]. This is largely unnoticed condition in this age group. Although various studies have been done in young women, particularly, women medics, there are limited data regarding anemia in women PG medical students. We selected this population, as the medical awareness is high in this group and is self-sufficient to support them financially.

The prevalence of anemia in young women in Asia is estimated to be 33% [3]. Mittal et al. reported that anemia is common in adolescent girls, more frequent among younger group (71.15%) compared to older (28.85%). Girls from lower socioeconomic group (76.92%) comprised greater proportion of those with anemia [7]. Prevalence among young college women is estimated to be 24.62-26.7% [8] in United Arab Emirates (UAE) [9] and 25.4% in Sri Lanka [10]. In India, prevalence among young women is reported to be 56.0% [11]. Few studies have assessed the prevalence of anemia in young Indian women medics varying between 19.13% [12] and 47.37 [13]. Khan et al. [14] too reported a high rate of prevalence of anemia in undergraduate medics. We observed a higher prevalence of 44%.

Pasupala et al. [15] in their study on south Indian medical students reported that Indian women have lower Hb. The mean Hb value of

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Anemic</th>
<th>Non-anemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>All students</td>
<td>44 (44)</td>
<td>56 (56)</td>
</tr>
<tr>
<td>Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>12 (27.3)</td>
<td>19 (33.9)</td>
</tr>
<tr>
<td>2nd</td>
<td>11 (25)</td>
<td>17 (30.6)</td>
</tr>
<tr>
<td>3rd</td>
<td>21 (47.7)</td>
<td>20 (35.7)</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underweight (>18.5)</td>
<td>8 (18.2)</td>
<td>8 (14.3)</td>
</tr>
<tr>
<td>Normal (>18.5-24.9)</td>
<td>35 (79.5)</td>
<td>40 (71.4)</td>
</tr>
<tr>
<td>Overweight (≥25-30)</td>
<td>1 (2.3)</td>
<td>8 (14.3)</td>
</tr>
<tr>
<td>Obese (≥30)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

N=100. Table shows distribution of anemia and physical characteristics. 3rd year students were anemic in higher in proportion; none were obese. BMI: Body mass index

| Table 2: Proportion of participants with the four sets of classification of anemia |
|----------------------------------|------------------|------------------|
| Hb (g/dL) | Frequency (%) |
| Non-anemic | >12 | 56 (56) |
| Mild anemic | 11-11.99 | 12 (12) |
| Moderately anemic | 11.99-12.19 | 32 (32) |
| Severely anemic | <11.99 | 0 (0) |
| Total | 100 (100) |

N=100. Classification of anemia based on the WHO classification. None were severely anemic. Hb: Hemoglobin

<p>| Table 3: Distribution of non-anemic and anemic subjects according to dietary habits |
|----------------------------------|------------------|------------------|</p>
<table>
<thead>
<tr>
<th>Parameter assessed</th>
<th>n (%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anemic</td>
<td>Non-anemic</td>
</tr>
<tr>
<td>Number of meals supplemented with meat, fish, or egg per day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero</td>
<td>8 (18.2)</td>
<td>2 (3.6)</td>
</tr>
<tr>
<td>One</td>
<td>11 (25)</td>
<td>30 (53.6)</td>
</tr>
<tr>
<td>Two</td>
<td>16 (36.4)</td>
<td>14 (25)</td>
</tr>
<tr>
<td>Three</td>
<td>4 (9.1)</td>
<td>5 (8.9)</td>
</tr>
<tr>
<td>Drinking tea within one hour of a main meal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8 (18.2)</td>
<td>9 (16.1)</td>
</tr>
<tr>
<td>No</td>
<td>36 (81.2)</td>
<td>47 (83.9)</td>
</tr>
<tr>
<td>Passage of clots in menstrual blood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>19 (43.2)</td>
<td>18 (32.1)</td>
</tr>
<tr>
<td>No</td>
<td>25 (56.8)</td>
<td>38 (67.8)</td>
</tr>
<tr>
<td>Anthelminthic treatment within the past year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>7 (15.9)</td>
<td>17 (30.4)</td>
</tr>
<tr>
<td>No</td>
<td>37 (84.1)</td>
<td>39 (69.6)</td>
</tr>
<tr>
<td>Taking iron supplements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8 (18.2)</td>
<td>4 (7.1)</td>
</tr>
<tr>
<td>No</td>
<td>36 (81.8)</td>
<td>52 (92.9)</td>
</tr>
</tbody>
</table>

N=100. Factors affecting the nutritional status were analyzed, none had significant effect on the status of hemoglobin except number of meals supplemented with meat, fish, or egg per day.
our participants was 11.54 g/dL; it was 10.35 g/dL among the anemic
participants and 12.49 g/dL among non-anemic participants. Debbarma
et al. too observed the mean Hb levels (11.6%) in female medics and
50.0% of female medics were anemic [4]. In medics from UAE, mean
Hb was higher (12.83±1.49) [8]. Manjula et al. [12] noted a mean Hb
of 12.74 g/dL; they reported higher Hb levels (11.39 g/dL±0.63) in
anemic students compared to our study. Surprisingly, in spite of having
adequate medical knowledge, 81.8% of anemic students were not on
iron supplements in our study.

Ayoub et al. reported mean Hb of 12.8 g/dL±1.49 in female medics from
Dubai [8]. Similar higher Hb concentration (13.7 g/dL) was noted by
Shams et al. [1] in Tehran, wherein anemic medical students had mean
11±6.9 g/dL of Hb which was higher compared to our anemic study
population which could be due to the average low Hb levels of Indian
women [16].

We followed the WHO criteria [5] to classify anemia into mild, moderate,
and severe anemia. None of the participants in our study had severe
anemia. Other studies in women medics also have not reported severe
anemia [11,14-15]. Except from Rumi et al. with one female medic with
Hb <8.0 g/dL [4]. Moderate anemia was most common among our
study population (32%) while mild anemia was less (12%). Rumi et al.
too reported a higher rate of mild (21.9%) and moderate (26.6%) anemia
in female medics [4]. In contrast, Chaturanga et al. [10] noted lesser
prevalence of moderate (17.5%) and mild anemia (7.9%). Contrasting
results have been reported from India too, with mild anemia being more
common (83.33%-7.0%) in women undergraduate medics [12,13]. Khan
et al. noted mild anemia in women undergraduates in 44% and
moderate in 12% [14]. However, Karkar et al. from Vadodara reported
almost equal occurrence of mild and moderate anemia (mid=42.5%
and moderate=43.11%) [16].

We did not find any significant correlation between BMI and anemia in
our study population. Normal BMI was observed in 79.5% of anemic
students and 71.4% of non-anemics. Only one student was overweight
and was anemic compared to eight in non-anemic group. None of our
PGs was obese, similar to the observation of Manjula et al. [12]. In their
study, normal and overweight category occupied a major portion in
normal (18.5%) and anemic (81.5%) women medics. Undernourished
comprised of 21.6% in anemic group and 78.4% in non-anemic group.
We did not find any positive association between BMI and anemia in
our study population.

Meat products such as red meat, poultry, and fish represent excellent
dietary sources of highly bioavailable heme iron. Low consumption of
red meat, vegetables, fruits, and cereals has been reported to be
associated with iron deficiency anemia [17]. It is not surprising that
anemia was less frequent in those who consumed non-vegetarian diet.
Similar reports from India have pointed out this finding [12-14].

Other food habits, which were considered in this study, including
drinking tea after main meals and consumption, which has been reported
in 26.92% of young girls [7], did not show a statistically significant
association with anemia though 50% of those who drank tea after food
within an hour of main meal were anemic. Tea is known to reduce iron
absorption from the gut, failed to prove the same in our study. Similar
observation was reported from a study in the Abdulaziz University [18].

Heavy menstrual blood loss is an important risk factor to develop iron
deficiency anemia; however, in our study, there was no statistically
significant relationship between anemia and the number of days, the
participants have menstruated. None of our participants had menstrual
flow >4.5 days which is well within the normalcy. We found heavy flow
as observed in few participants did not contribute to anemia. These
observations are similar to that from the study at University of Haifa [19].

Shill et al. [20] have documented the positive association between
heavy flow and anemia as a greater number of anemic subjects (n=34)
and lack of awareness [21].

Ours is the only study done in women PG medics, most of the studies
are either on women students or specifically in undergraduate students
or undergraduate women medics. Our study shows that despite awareness
and self-sufficient to manage their nutritional needs, higher
proportion of our PG students have anemia of moderate severity. We
could not elicit a relation between the type of meal, dietary habits,
and status of Hb, though anemia was slightly less in non-vegetarians.
However, we cannot derive a conclusion from our observation as the
total sample size and that of vegetarians in our study is less. We did not
assess the socioeconomic factors as we assumed that being PG medics,
awareness regarding the nutritional deficiency is more in this group;
for the same reason, residential status (hosteller or day scholar) was
not recorded. We did not assess these anemic students clinically. As
cognition and learning ability get affected by anemia, assessing these
parameters would have been helpful to derive conclusion about the
need and timing of medical intervention. We did not assess the effect
of iron and other nutritional supplements in these patients.

Our study suggests that despite increased awareness through
education, experience, and being self-sufficient, our future doctors
do not take necessary measures to maintain an optimum Hb levels.
We could not elicit any association between dietary habits, heavy
menstrual bleeding, prior anthelminthic treatment, and anemia. Hectic
work schedule, academic pressure might have made them to neglect
their nutritional needs.

CONCLUSION

Anemia is still a concern in young women, and PG medical students
are no exempt. Although none had severe form, anemia of moderate
severity is prevalent among our PG students. Necessary measures
need be taken to diagnose and treat, as dietary habits did not seem to
influence or contribute significantly to the maintenance of adequate Hb
levels.

ACKNOWLEDGMENT

Authors would like to thank all participants who consented to participate
in this study. Authors acknowledge the Management of Pt Mulder Medical
College for their support during the conduct of the study. We appreciate
the assistance of Dr Latha in editing and proof reading.

REFERENCES

2. Government of India. National Family Health Survey (NFHS) III
(2005-06); India Report. Bombay: International Institute for Population
Sciences; 2007. 4.
among medical students of regional institute of medical sciences (RIMS),
5. WHO. Haemoglobin Concentrations for the Diagnosis of Anaemia and
Assessment of Severity. Vitamin and Mineral Nutrition Information
indicators/haemoglobin.pdf. [Last accessed on 2016 Aug 30].
6. Fayet-Moore F, Petocz P, Samman S. Micronutrient status in female
university students: Iron, zinc, copper, selenium, vitamin B12 and
7. Bhanushali MM, Shirode AR, Joshi YM, Kadam VJ. An intervention
on iron deficiency anemia and change in dietary behavior among
8. Ayoub AI. Iron deficiency anemia in Dubai medical college for girls: A
9. Sultan AH. Anemia among female college students attending the
University of Sharjah, UAE: Prevalence and classification. J Egypt
undergraduates residing in the hostels of university of Sri
11. Nutrition in India. National Family Health Survey (NFHS-3) India
12. Manjula VD, Parameshwari P, Pothen LK, Sobha A. Prevalence of
anaemia among female undergraduate students of government medical
13. Pandey S, Singh S. A cross sectional study of nutritional anaemia among
medical students in a medical college, at Bilaspur, Chhattisgarh. Natl J
14. Khan B, Sukshohale ND, Jawade P. Prevalence of anemia among
undergraduate medical students of Central India. Glob J Res Anal
15. Pasapula DK, Reddy PS. When is a South Indian really anemic? Indian
16. Karkar PD, Kotecha PV. Prevalence of anemia among students of
18. Al-Sayes F, Gari M, Qusti S, Bagatian N, Abuzenadah A. Prevalence of
iron deficiency anaemia among females at university stage. J Med Lab
Diagn 2011;2:5-11.
19. Mohamed S, Sweilem S. Prevalence of anemia levels in a sample of
20. Shill KB, Karmakar P, Kibria MG, Sattar MM. Prevalence of iron-
deficiency anaemia among university students in Noakhal region,