INTRODUCTION
Malaria has been a continuous socioeconomic burden among almost all of the developing countries including India. Historically, malaria in our country was predominantly caused by Plasmodium vivax, accounting for 53% [1] of the estimated cases and also by far have the greatest estimated Plasmodium vivax burden of any country. P. vivax accounts for approximately one third of all malaria cases in India while a study reported that states such as West Bengal, Gujarat, Madhya Pradesh, Orissa, Andhra Pradesh, and North-East being highly endemic for P. falciparum and they contribute to around 97% of the total P. falciparum affected cases in the country [2].

Microscopy and rapid diagnostic tests (RDTs) represent the two most commonly used methods for detection of malaria with the largest impact on malaria control today [3]. Although light microscopy is considered as gold standard, it has its own characteristic strengths and limitations. It is prone to inherent errors due to sample handling, staining, and individual reader techniques [4-6]. According to Kilian et al. and Bell et al., in case of low parasitemia (<50/μl) microscopy is less reliable [7,8]. In contrast, RDT kits are equally sensitive, specific, and stable under operational conditions and does not require extensive training or any equipment to perform or to interpret the results, and commercially available with all necessary reagents [9-11]. Moody and Leke et al. also reported that results of RDTs are rapidly available and less liable of being falsely negative due to parasite sequestration [12,13]. Antimalarial drug resistance and economic loss due to increased morbidity and mortality, there is an urgent requirement of improvement of parasite-based diagnostic methods with good quality and their availability to people living in endemic areas.

METHODS
This retrospective study was conducted in a tertiary care medical institution at Rishikesh, Uttarakhand. Blood samples were collected in Ethylenediaminetetraacetic acid vials from 2982 patients who were clinically suspected for malaria. Thick and thin smear microscopy and RDTs were done on these blood samples collected over 3 years. The patient’s name, age, sex, details of fever, and other symptoms and clinical examination findings were recorded. Thick and thin films were made within 10 min of collection and stained by Leishman’s stain. RDT based on Lactate dehydrogenase/Histidine-rich Protein-2 antigens was carried out on aliquots of whole blood. As per diagnostic modality requested by clinicians, samples were divided into three groups.

1. Group 1 represents the samples which were only sent for peripheral blood smear (PBS) microscopy.
2. Group 2 represents the samples which were only sent for RDT.
3. Group 3 represents the samples which were sent for both PBS microscopy and RDTs.

Statistical analysis
All data were analyzed using Statistical Package for the Social Sciences (SPSS) version IBM SPSS-23. Data are represented in the form of frequency and percentage.

RESULTS
Out of 2982 samples screened for malaria, 132 samples tested positive. Among 132 positive samples, 41 were detected in Group 1, 42 were...
Table 1: Demographic details of the malaria patients (n=132)

<table>
<thead>
<tr>
<th>Gender</th>
<th>Male (n=89) mean±SD</th>
<th>Female (n=43) mean±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–18</td>
<td>12.21±2.92</td>
<td>13.75±3.09</td>
</tr>
<tr>
<td>19–29</td>
<td>23.09±2.55</td>
<td>24.15±2.17</td>
</tr>
<tr>
<td>30–49</td>
<td>38.02±5.67</td>
<td>35.85±4.54</td>
</tr>
<tr>
<td>≥50</td>
<td>58.11±5.9</td>
<td>54.63±2.96</td>
</tr>
<tr>
<td>Geographic location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haridwar, Pauri Garhwal, Bijnor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seasonal distribution</td>
<td></td>
<td>July-September</td>
</tr>
<tr>
<td>Species isolation</td>
<td>P. vivax (95%;125/132)</td>
<td>P. falciparum (5%;7/132)</td>
</tr>
</tbody>
</table>


Table 2: Sensitivity, specificity, PPV and NPV of RDT

<table>
<thead>
<tr>
<th>Statistical analysis</th>
<th>Total screened (n=2982)</th>
<th>Malaria positive (n=132)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>1521</td>
<td>41</td>
</tr>
<tr>
<td>Group 2</td>
<td>1045</td>
<td>42</td>
</tr>
<tr>
<td>Group 3</td>
<td>416</td>
<td>49</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>91.8%</td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td>93.8%</td>
<td></td>
</tr>
<tr>
<td>PPV</td>
<td>97.8%</td>
<td></td>
</tr>
<tr>
<td>NPV</td>
<td>98.9%</td>
<td></td>
</tr>
</tbody>
</table>

PPV: Positive predictive value, NPV: Negative predictive value, RDT: Rapid diagnostic test

Malaria is usually diagnosed using clinical criteria, with microscopy as the current gold standard even though it is not appropriate in many health-care settings. In recent years, RDTs have been considered as an ideal alternative method for diagnosing malaria [24,25]. Today’s multi-million dollar investment in antimalarial drug and vaccine development should be accompanied by a parallel commitment to improve diagnostic tools and their availability to those living in endemic malaria areas. Wangsrichanala et al. Suggested that RDT is a valuable complement to microscopy because it helps in reducing the over diagnosis based on clinical symptoms only and thus widens the coverage of parasite-based diagnosis to the periphery [6]. Similarly, [26] recommended the use of RDT in conjunction with microscopy [25,26]. These studies are in concordance with our study where sensitivity and specificity of RDTs was found to be 91.8% and 93.8%, respectively.

CONCLUSION

Malaria should always be considered as a medical emergency, and an early diagnosis should be made so that we could prevent its further spread in community. Although RDTs are best alternative to microscopy till date, their high cost and low specificity have been a matter of concern. However, in contrast, we found high sensitivity as well as high specificity of RDT as compared with microscopy in our study.

Thus, we conclude that RDTs can be used for confirming clinical diagnosis and for starting early and prompt treatment of malaria which would surely decrease the morbidity and mortality in the hospital as well as in field settings especially in a low prevalence area like Uttarakhand.

REFERENCES


