INTRODUCTION

Tuberculosis (TB) is an infectious disease that causes the most widespread death in the world [1]. In 2014, TB caused 1.5 million of deaths [2]. It remains a major global health problem. This disease is caused by Mycobacterium tuberculosis, an intracellular obligate and aerobic bacillus that multiplies within macrophage. M. tuberculosis infects the lungs and can spread to other human through droplets from the throat of people-infected TB. Beside of the lungs, this bacteria can affect other organs in the human body such as lymph gland, abdomen, skin, joints, and meninges.

TB occurs in every part of the world. In low- and middle-income countries, TB cases occurred over 95% [3]. About 58% of reported TB cases in the world occurred in Southeast Asia and West Pacific [2]. Indonesia becomes the second country in the world with the largest TB cases. In the global TB report of the year 2015, the WHO informed that there were 9.6 million TB cases and 12% of new cases were coinfected with HIV.

TB is a curable disease with a combination of four first-line drugs: isoniazid, rifampicin, pyrazinamide, and ethambutol, for a regimen of at least 6–9 months. Unfortunately, in the past few decades, multidrug-resistant TB (MDR-TB) was arised. MDR-TB is caused by strain of M. tuberculosis that is resistant to isoniazid and rifampicin [4]. The resistance is caused by mutation in the nucleic acid of the bacteria. For assessing bacterial resistance, molecular detection technique is known fast and specific [5]. In 2014, there were 480,000 MDR-TB cases and estimated 190,000 people are died because of this disease [2]. Patients’ adherence to TB treatment is important to get the effective treatment and to prevent the occurrence of multidrug-resistant MDR-TB [6]. Approximately 10% of the total MDR-TB cases are classified as extensively drug-resistant TB (XDR-TB) [7]. In these cases, M. tuberculosis strain is not only resistant to isoniazid and rifampicin but also resistant to any fluoroquinolones and to at least first-line injectable anti-TB drug, i.e. amikacin, capreomycin, and kanamycin. The emergence of MDR-TB and followed by XDR-TB remains a major challenge to global health. This condition led to an urgent need to discover new anti-TB drugs. Many research is focused on the discovery and development of new anti-TB drug from natural product [1]. The discovery of new anti-TB drug candidates who are more effective against MDR-TB strain and XDR-TB strain became very urgent, especially in developing countries with high incidence of TB. It can be done by screen from novel compound from natural product including plant species [8]. Medicinal plants can be potential anti-TB drug candidate if it is proven by scientific studies first. Some of them used as food ingredient, and it will be more efficient to minimize the disease [9]. Not only plants but also other natural product can be used as a source of new anti-TB agents. Crude extract from a Bacillus sp. N strain associated with entomopathogenic nematode Rhabditis (Oscheius) sp. has antymycobacterial activity against M. tuberculosis H37Rv with a MIC of 125 µg/ml [10].

Tinospora crispa (L.) Miers ex Hook. f. Thoms is a member of Menispermaceae. It is popularly known as Brotovali in Indonesia. It is widely distributed over tropical and subtropical Asia including India, Thailand, Vietnam, Philippines, Indonesia, and Malaysia [11]. This plant is widely used as traditional medicine, especially its stem. The stem of T. crispa is traditionally used to treat TB. Some preliminary research reported the activity of T. crispa against M. tuberculosis. Ethanol extract of T. crispa from Laos has antymycobacterial activity against M. tuberculosis with minimum inhibitory concentration (MIC) 2.43–9.62 µg/ml [12]. However, there has been no report about the antymycobacterial activity of T. crispa that grows in Indonesia and its fractions or isolates. The present study determined the antymycobacterial activity of ethanolic extract and fractions of T. crispa collected from Indonesia.

MATERIALS AND METHODS

Materials

The stem of T. crispa was collected in February 2016 from Slemank, Yogyakarta, Indonesia, and was authenticated in the Department of...
Pharmaceutical Biology, Faculty of Pharmacy, Gadjah Mada University. The stem was dried at 40°C in a drying cabinet and was ground with a grinding machine before extraction. Each sample was dissolved in dimethyl sulfoxide 4% (Sigma-Aldrich Chemical). M. tuberculosis H37Rv used in this study was collected from Balai Besar Laboratorium Kesehatan, East Java (Indonesia). Middlebrook (MB) 7H9 broth (Difco), oleic acid/albumin/dextrose/catalase enrichment (OADC) (Becton–Dickinson and Company), Polymixin B, Amphoteracin B, Nalidixic Acid, Trimethoprim, Azlocillin (Becton–Dickinson and Company), Tween 80 (Sigma–Aldrich Chemical), Isoazilid (Sigma–Aldrich Chemical), Rifampicin (Sigma–Aldrich Chemical), and Kit MGIT BD Biosciences (Becton–Dickinson Company) were used. Lowenstein–Jensen (LJ) medium was prepared following the standard operating procedures recommended by the Indonesian National TB Program [13], which are in line with the WHO guidelines [14].

Extraction

Dried and ground plant material (500 g) was extracted by maceration method with ethanol 96% and repeated twice. The extracts were then condensed using a Buchi rotary evaporator (rotavapor).

Fractionation

Dried and ground plant material (500 g) was extracted by maceration method with ethanol 96% and repeated twice. The extracts were then condensed using a Buchi rotary evaporator (rotavapor) at 40°C to yield 136.6 g thick extract. The extract was fractionated using trituration method. The ethanolic extract (25 g) added with n-hexane and then shaken for 10 min. After shaking, it was filtered with Sinterglass, and then, the filtrate was collected. The fractionation with n-hexane was conducted 3 times. The collected filtrate condensed using a rotavapor and yielded n-hexane-insoluble fraction, FTH (15 g). Five gram (5 g) of FTH then added with ethyl acetate and then shaken for 10 min. After shaking, it was filtered with Sinterglass, and then, the filtrate was collected. The fractionation with ethyl acetate was conducted 3 times. The collected filtrate condensed using a rotavapor and its called ethyl acetate-insoluble fraction, FEA (2.2 g). The residue was called ethyl acetate-insoluble fraction, FTEA (2.8 g).

MGIT anti-TB test

In this study, M. tuberculosis H37Rv was used. M. tuberculosis was cultured on the mycobacteria growth indicator tube (MGIT) with BACTEC MGIT 960 growth supplement. MGIT 960 instrument (Becton Dickinson Diagnostic Systems, Sparks, Maryland, USA) system was used in this study to evaluate antimycobacterial activity of extract and its fractions against M. tuberculosis H37Rv. Before inoculating with the bacteria, MGIT growth tubes containing 7 ml media (BBL “MGIT” Bactec and Dickinson, USA) were supplemented with MB growth supplement (Oleic acid, Albumin, Dextrose, Catalase; OADC) as specified in the manufacturer’s protocol (800 µl/tube). After the growth supplement, 100 µl aliquots of extract or fraction were added aseptically into the MGIT tubes at different concentrations. For inoculation, the bacterial stock was thawed and prepared in 7H9–S media so that the inoculation volume (500 µl) contained sufficient numbers of bacterial cell (1×10⁸ cfu/ml in a tube). The contents were mixed gently by inverting the tube 3–4 times. All inoculated tubes were then inserted into the MGIT 960 automated culture system after scanning the barcode and incubated at the temperature of 37°C. For positive control, isoniazid, rifampicin, or no drugs were used. The growth control (GC) tube was prepared by adding 800 µl growth supplement and 500 µl bacterial suspension into MGIT tube. The GC did not contain any samples. In the case of positive growth, the system automatically detects growth and signals positive. After a maximum of 6 weeks (42 days), the instrument flags a tube as negative if no growth occurs. The results are qualitative such as susceptible (S), resistant (R), or indeterminate (X). The instrument interprets results at the time when the growth unit (GU) in GC reaches 400. At this point, the GU values of the drug vial are evaluated; Susceptible when the GU of the drug tube is <100 and resistant when the GU of the drug tube is 100 or more. Further, the results were confirmed with MGIT system.

Table 1: Antimycobacterial activity results of T. crispa: Tinospora crispa

<table>
<thead>
<tr>
<th>No</th>
<th>Sample</th>
<th>Code</th>
<th>Concentration (µg/ml)</th>
<th>Growth unit</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ethanol extract of T. crispa stem</td>
<td>EEB</td>
<td>1000</td>
<td>400</td>
<td>Not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>400</td>
<td>Not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>400</td>
<td>Not active</td>
</tr>
<tr>
<td>2</td>
<td>n-hexane-insoluble fraction</td>
<td>FH</td>
<td>1000</td>
<td>400</td>
<td>Not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>400</td>
<td>Not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>400</td>
<td>Not active</td>
</tr>
<tr>
<td>3</td>
<td>n-hexane-insoluble fraction</td>
<td>FTH</td>
<td>1000</td>
<td>400</td>
<td>Not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>400</td>
<td>Not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>400</td>
<td>Not active</td>
</tr>
<tr>
<td>4</td>
<td>Ethanol acetate-insoluble fraction</td>
<td>FEA</td>
<td>1000</td>
<td>400</td>
<td>Not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>400</td>
<td>Not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>400</td>
<td>Not active</td>
</tr>
<tr>
<td>5</td>
<td>Ethanol acetate-insoluble fraction</td>
<td>FTEA</td>
<td>1000</td>
<td>400</td>
<td>Not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>400</td>
<td>Not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>400</td>
<td>Not active</td>
</tr>
</tbody>
</table>

T. crispa: Tinospora crispa, MGIT: Mycobacteria growth indicator tube
the slants. As shown in Fig. 1, the positive control slant which contains rifampicin as anti-TB drug showed that there are no yellow colonies of M. tuberculosis. The results of this test showed that T. crispa ethanolic extract up to 1000 µg/ml did not exhibit anti-TB activity.

DISCUSSION

T. crispa is a well-known source of herbal plant which is used traditionally as medications for diabetes mellitus, hypercholesterolemia, and also hepatoprotective [16]. Ethanolic extract of T. crispa stem showed general standardization parameters. This plant has the potential compounds to be developed as a raw material of standardized herbal medicine [17]. To screen the potentiality of T. crispa as anti-TB candidate, ethanolic extract of the stem of T. crispa was tested against M. tuberculosis using MGIT system. Bactec MGIT 960 - an automated liquid system - has been developed to reduce time of experiment [18]. It is much shorter than agar proportion method (turnaround time is around 21 days). MGIT 960 system is a reliable, rapid, automated method for testing the susceptibility of clinical M. tuberculosis isolates to the first-line drugs [19]. Time for obtaining results in this research was 9 days, and it is longer than that observed by Kontos et al. (2004). It needed 7.12 days to obtain the MGIT results.

Different culture media are used for the isolation of mycobacteria. The most common is LJ medium, an egg-based medium. LJ medium contains high concentrations of malachite green to prevent contamination with other bacteria. However, culture on it is long (3 weeks to 3 months for M. tuberculosis) and time-consuming. MGIT was better than LJ medium in recovery rate and detection time of mycobacterial growth [20]. Due to its sensitivity, MGIT should be used for smear-negative pulmonary TB patients [21]. MGIT system could be an acceptable alternative to the radiometric Bactec method for rapid and reliable testing of M. tuberculosis [22].

The MGIT consists of liquid broth medium that is known to yield better recovery and faster growth of mycobacteria. The MGIT contains modified Middlebrook 7H9 broth base. The MGIT tube contains an oxygen-quenched fluorochrome, tris 4.7-diphenyl-1, 10-phenanthroline ruthenium chloride pentahydrate, embedded in silicone at the bottom of the tube. During bacterial growth within the tube, the free oxygen is used and is replaced with carbon dioxide. The decrease of free oxygen made the fluorochrome was no longer inhibited and produces a fluorescence within the MGIT tube when visualized under UV light [20].

The relative growth ratio between the sample-containing tube and sample-free GC tube was determined by the system’s software algorithm, once the GC became positive. If the relative growth of the sample containing tube was equal to or exceeded that of the GC tube, the bacterial was considered resistant; if the relative growth was less than in the GC tube, the bacterial was considered susceptible. The instrument did the final interpretation and reported the result automatically.

![Fig 1: Tinospora crispa ethanolic extract which has been inoculated with Mycobacterium tuberculosis on Lowenstein–Jensen medium slant at 37°C for 4 weeks. (a) M. tuberculosis control; (b) medium control (without M. tuberculosis suspension); (c) positive control, rifampicin 40 µg/ml; (d) solvent control (dimethyl sulfoxide 5%); (e) T. crispa ethanolic extract of concentration 1000 µg/ml; (f) T. crispa ethanolic extract of concentration 500 µg/ml; (g) T. crispa ethanolic extract of concentration 250 µg/ml.](image)

There are many different references to analyze the anti-TB activity of plant extracts. In the previous study, plant extract was considered active against M. tuberculosis if MIC was <100 µg/ml [23-25], <200 µg/ml [26,27], <1600 µg/ml [28], and ≤2048 µg/ml [29]. In other paper, the antimicrobial activity of plant extracts was classified as significant (MIC ≤100 µg/ml), moderate (100< MIC ≤625 µg/ml), or weak (MIC >625 µg/ml) [30]. In this study, we tested extract and fraction of T. crispa at three concentration with 1000 µg/ml as the highest concentration. Hence, we interpreted activity as inhibition at any values of MIC ≤1000 µg/ml.

Agar proportion method with LJ medium was conducted due to confirm the results of anti-TB activity test with MGIT method. This method is the current standard method used in Indonesia for drug susceptibility testing of M. tuberculosis against anti-TB drugs. It is required at least 28 days for obtaining the results, and this is the drawback of this method. Mycobacterial growth on cultures was considered as positive as soon as yellow colonies appear on LJ medium. In this test, we used three concentration series, i.e., 1000, 500, and 250 µg/ml. The results of this test showed that T. crispa ethanolic extract up to 1000 µg/ml did not exhibit anti-TB activity. This results obtained an agreement between the MGIT method and the agar proportion method with LJ medium.

Ethanolic extract of Brotowali stem contains flavonoid as a group of compounds that have antiradical activity. It has DPPH radical scavenging activity with IC50 was 33.75 µg/ml [31]. T. crispa contains a wide range of secondary metabolites such as alkaloids, terpenes, flavones, and phenolic compounds [32]. This compounds exhibited antitubercular activity [25,33]. However, in this research, we did not do any test to find what compounds are in T. crispa extract and fractions.

CONCLUSIONS

Our data show that ethanolic extract and fractions of T. crispa have no anti-TB activity against M. tuberculosis until 1000 µg/ml.

ACKNOWLEDGMENTS

The authors would like to thank Tuberculosis Alliance and Faculty of Pharmacy, Universitas Gadjah Mada, for the funding of this research.

AUTHORS CONTRIBUTION

All the author have contributed equally.

CONFLICTS OF INTERESTS

We have no conflict of interest to declare.

REFERENCES

9. Dhanabal SP, Lall N, Paviithra N, Chaitanya MV. Natural products as an important leads for discovery of new antitubercular agents: A review.
Annonaceae ameliorates insulin resistance induced by high-fat diet.

Antibacterial activity of selected Cameroonian dietary spices for rapid detection of multidrug resistance using the BACTEC MGIT 960 system: A multicenter study.

Laboratory Services in Tuberculosis Control. Geneva Switz; WHO; 1998.

Evid Based Complement Alternat Med 2015;1-6.

Activity against drug resistant-tuberculosis strains of plants used in Mexican traditional medicine to treat tuberculosis and other respiratory diseases. Phytother Res 2008;22:82-5.