MUSHROOM IN METHANOL AND AQUEOUS EXTRACT

IN VITRO STUDIES ON ANTIOXIDANT AND ANTIDIABETIC ACTIVITY OF PLEUROTUS EOUS MUSHROOM

SHOBHA K1, KRISHNAKUMARI S2*

1Department of Biochemistry, New Prince Shri Bhavani Arts and Science College, Chennai, Tamil Nadu, India. 2Department of Biochemistry, Kongunadu Arts and Science College (Autonomous), Coimbatore, Tamil Nadu, India

ABSTRACT

Objective: The present study evaluates the antioxidant and antidiabetic activity of the mushroom.

Methods: Antioxidant activity was evaluated using hydroxyl radical, hydrogen peroxide, and antidiabetic activity using α-amylase and α-glucosidase.

Result: The antioxidant IC50 for the mushroom extracts methanol and aqueous [Hydroxyl radical] was found to be 290,440 µg/ml [Hydrogen peroxide] 475,370 µg/ml and antidiabetic (α Amylase) IC50 was found to be 460,500 µg/ml and (α Glucosidase) 325,280 µg/ml respectively.

Conclusion: The result obtained in the in vitro methods suggests that Pleurotus eous mushroom can be administered for its antioxidant and antidiabetic activity.

Keywords: Antioxidant, Antidiabetic activity, α-amylase, α-glucosidase, Hydroxyl radical, Hydrogen peroxide.

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i5.22828

INTRODUCTION

Free radicals arising from metabolism or environmental sources interact continuously in biological systems, and their uncontrolled generation correlates directly with molecular level of many diseases [1]. The innate defense of human body is not enough for severe oxidative stress that further has been associated with cancer, aging, inflammation, neurodegenerative diseases, hypertension, atherosclerosis, etc. Over production of various forms of reactive species such as reactive oxygen species, reactive nitrogen species, and non-radical species is considered to be a major factor of oxidative stress [2]. A lot of research have clearly showed that free radicals would damage nearby structures including DNA, proteins, or lipids. Radical scavenging antioxidants are particularly important in antioxidant defense in protecting cells from the injury of free radical [3]. It is well known that free radicals are the major cause of various chronic and degenerative diseases, such as coronary heart disease, inflammation, stroke, diabetes mellitus, and cancer [4]. Studies have shown that mushrooms have hepatoprotective [5-7], anticancer [8-10], antimicrobial [11,12], and antidiabetic [13,14] activities. A study of various mushroom units maintained at Kongunadu Arts and Science College, Coimbatore - 641 029, Tamil Nadu, India.

Sample collection

Fresh fruiting bodies of P. eous mushroom were cultivated in the mushroom units maintained at Kongunadu Arts and Science College, Coimbatore - 641 029, Tamil Nadu, India.

Extract preparation

Extract of mushroom was prepared using two different solvents (methanol and aqueous). Dried powdered weighed carefully and used for methanol extract preparation through Soxhlet apparatus and aqueous extract boiled for 2 h and centrifuged. The supernatant collected is used for further use.

Antioxidant and antidiabetic activity of P. eous mushroom

Determination of hydroxyl radical scavenging activity

Deoxyribose assay was used to determine the hydroxyl radical scavenging activity in an aqueous medium [23]. The reaction mixture containing FeCl3 (100 µM), ethylenediaminetetraacetic acid (EDTA) (104 µM), H2O2 (1 mM), and 2-deoxy-D-ribose (2.8 mM) in potassium phosphate buffer (20 mM, pH 7.4) was mixed with various concentrations of sample. Incubate for 1 h at 37°C. The mixture was heated at 95°C in water bath for 1.5 min followed by the addition of 1 mL each of trichloroacetic acid (2.9%) and thiobarbituric acid (TBA) (0.5% TBA in 0.025 M NaOH). Finally, the reaction mixture was cooled on ice and centrifuged at 5000 rpm for 15 min. Absorbance of supernatant was measured at 532 nm. The hydroxyl radical scavenging activity of the mushroom extract was reported as percentage inhibition of deoxyribose degradation and was calculated using the following formula:

\[\text{% Inhibition} = \left(\frac{\text{control OD-sample OD}}{\text{control OD}} \right) \times 100 \]
Determination of hydrogen peroxide scavenging activity

This activity was determined according to the standard method with minor changes [24], take different concentrations of samples and standard, and add equal volume of H$_2$O$_2$ in test tubes. To this, add 10 µL of methanol and 900 µL of FOX reagent. Incubate 30 min at room temperature. Measure OD at 560 nm.

% Inhibition = \(\frac{\text{control OD-sample OD}}{\text{control OD}} \times 100 \)

Assay for α-amylase inhibition

The α-amylase inhibitory activity of extract and fractions was carried out according to the standard method with minor modification [25]. 100 µL of test samples and standard drug (20-100 µg/mL) were taken. Then, 250 µL of α-amylase (1 mg/mL) in 0.2 M sodium phosphate buffer (pH 6.9) was added to each tube and was incubated at 37°C for 20 min. Then, 250 µL of a 0.5% starch solution in 0.2 M sodium phosphate buffer (pH 6.9) was added to each tube. The reaction mixtures were then incubated at 37°C for 15 min. The reaction was stopped with 1 mL of 3, 5 dinitrosalicylic acid. The test tubes were then incubated in a boiling water bath at 100°C for 10 min, cooled to room temperature. The reaction mixture was then diluted to 10 mL using distilled water, and absorbance was measured at 540 nm. The % α-amylase inhibitory activity is calculated by the following formula:

% Inhibition = \(\frac{\text{control OD-sample OD}}{\text{control OD}} \times 100 \)

Assay of alpha-glucosidase activity

The α-glucosidase inhibitory activity of extract and fractions was carried out according to the standard method with minor modification [26]. 50 µL of different concentrations was added (should not mix) and incubated at 37°C for 5 min. Then, 50 µL of p-nitrophenyl alpha-D-glucosidase was added, vortexed, and incubated at 37°C for 30 min. 50 µL of 0.1 M sodium carbonate was added. Absorbance was measured at 405 nm (Figs. 1 and 2).

% Inhibition = \(\frac{\text{control OD-sample OD}}{\text{control OD}} \times 100 \)

RESULT

Differential concentrations of the methanolic and aqueous extract of *P. eous* were tested for their antioxidant activity using different in vitro models. It was observed that free radicals were scavenged by the test compounds in a concentration-dependent manner in all the models. Inhibiting of α-amylase and α-glucosidase could be of importance in the management of diabetes mellitus as it also addresses some side effects associated with synthetic antidiabetic drugs. Hence, *pleurotus eous* mushroom ingestion will improve the quality of life of diabetic patients.

Statistical analysis

The results were expressed as mean values and standard deviation. Linear regression analysis was used to calculate IC$_{50}$ value.

DISCUSSION

Hydroxyl radicals (OH) generated in the human body may play an important role in tissue injury at sites of inflammation in oxidative stress-originated diseases. Hydroxyl radicals were formed in free solution and were detected by their ability to degrade 2-deoxy-2-ribose into fragments that formed a pink chromogen on heating with TBA at low pH. Ferric-EDTA was incubated with H$_2$O$_2$ and ascorbic acid at pH 7.4. While the addition of methanol extract to the reaction mixture found that they removed hydroxyl radical from the sugar and prevented their degradation. The methanol extract of *P. eous* mushroom showed potent hydroxyl radical scavenging activity. The antioxidant IC$_{50}$ for the mushroom extracts methanol and aqueous(Hydroxyl radical) was found to be 290,440 µg/ml (Hydrogen peroxide) 475,370 µg/ml (Table 1), further the shown hydroxyl radical scavenging activity as dose dependent. In vitro tests can play a very important role in the evaluation of antidiabetic activity of drugs as initial screening tools, where the screening of a large number of potential therapeutic candidates may be necessary [27-29]. The therapeutic approach for treating Type 2 diabetes is to decrease the post-prandial glucose levels. This could be done by retarding the absorption of glucose through the inhibition of the carbohydrates hydrolyzing enzymes, α-amylase, and α-glucosidase, which is present in the small intestinal brush border is responsible for the breakdown of oligosaccharides; disaccharides into monosaccharides suitable for absorption [30-33]. Number of studies have been reported the alpha-amylase and alpha-glucosidase inhibitory activities in various plants and medicinal mushrooms. The similar activity was not investigated before in *P. eous* mushroom. In the present study, in vitro antidiabetic studies revealed the inhibition of alpha-amylase and alpha-glucosidase activity. The intestinal digestive enzymes alpha-amylase play a vital role in the carbohydrate digestion. One antidiabetic therapeutic approach reduces the post-prandial glucose level in blood by the inhibition of alpha-amylase enzyme. These can be an important strategy in the management of blood glucose [34]. The percentage inhibition at 100, 200, 300, 400, and 500 µg/mL concentrations of *P. eous* on α-amylase and α-glucosidase showed a concentration-dependent reduction in percentage inhibition (Figs. 3 and 4). Antidiabetic (α Amylase) IC50 was found to be 460,500 µg/ml and (α Glucosidase) 325,280 µg/ml respectively. (Table 2). Therefore, the antidiabetic effect of *P. eous* might attribute to its inhibitory effect against α-amylase and α-glucosidase that retarding the digestion of carbohydrate to delay the postprandial rise in blood glucose.

CONCLUSION

From the above results, it can be concluded that the methanolic extract of the mushroom *P. eous* showed more potent in vitro antioxidant activity, with higher percentage inhibition, than the aqueous extract. It may be concluded that mushrooms have immense potential and may be developed as effective and safe antidiabetic therapy.

CONFLICT OF INTERESTS

There is no conflict of interests regarding the publication of this paper.
Table 1: IC\(_{50}\) values of antioxidant extracts

<table>
<thead>
<tr>
<th>Sample</th>
<th>Hydroxyl radical (µg)</th>
<th>Hydrogen peroxide (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol extract</td>
<td>2.90</td>
<td>4.75</td>
</tr>
<tr>
<td>Aqueous extract</td>
<td>4.40</td>
<td>3.70</td>
</tr>
</tbody>
</table>

Table 2: IC\(_{50}\) values of antidiabetic extracts

<table>
<thead>
<tr>
<th>Sample</th>
<th>Alpha-amylase (µg)</th>
<th>Alpha-glucosidase (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol extract</td>
<td>460</td>
<td>325</td>
</tr>
<tr>
<td>Aqueous extract</td>
<td>500</td>
<td>280</td>
</tr>
</tbody>
</table>

REFERENCES

