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ABSTRACT

Objective: Structure and ligand-based drug design approaches have be been integrated to accurately predict the inhibition activity of hydroxamic acid 
(HA) derivatives against the histone deacetylase-2 enzyme (HDAC2).

Methods: The “active conformations” of the ligands in the binding site of the enzyme were determined by docking assays. More than 1000 0–3 
dimensional molecular descriptors included in Dragon package were calculated and utilized for developing quantitative structure-activity relationship 
(QSAR) models through a multiple linear regression approach coupled with the genetic algorithm (GA-MLR).

Results: The final model obtained showed suitable robustness and stability, with low correlation between descriptors and good predictive power. 
QSAR model was then used for screening bioactivity from a series of 36 novel HAs and found five candidates with very good bioactivity (half 
maximal inhibitory concentration<0.1 μM). Docking experiment revealed the binding mode of these compounds into the active site of HDAC2. Drug-
likeness and toxicity profiles of the compounds were checked through chemoinformatics tools.

Conclusion: The results from this study can lead to rational design and synthesis of highly selective and potent HDAC2 inhibitors.

Keywords: Docking, Quantitative structure-activity relationship, Histone deacetylase, Rational drug design, Hydroxamic acid.

GRAPHICAL ABSTRACT

 INTRODUCTION

Hydroxamic acids (HAs) belong to a very unique family of chemicals that 
show a broad spectrum of biological activities [1]. Their CONHOH moiety 
has been identified as a key functional group responsible to numerous 
therapeutic benefits, including anticancer, antiviral, and antioxidant, 
for treatment of cardiovascular diseases and Alzheimer’s disease, to 
name but a few. The polypharmacology of HA moiety mainly relies 
on its ability to chelate with metal ions at the active site of numerous 
metalloenzymes, such as matrix metalloproteinases, peroxidases, and 
histone deacetylases [1]. In addition, the presence of nitrogen and 
oxygen lone pairs as well as hydroxyl and amine hydrogens enables HA 
to form multiple hydrogen bond interactions with its target [2].

One of the most widely investigated bioactivities of HAs is the potential 
inhibition of histone deacetylase (HDAC) [3]. HDACs comprise a 
family of 18 enzymes that control the N-ε-lysine deacetylation of 
histone to reestablish the positive charge in the N-terminus of the 
histone tails. Since then the histone-DNA interaction becomes so 
tight that the transcriptional machinery cannot access to the DNA 
template. Therefore, HDAC silencing or inhibition has been shown to 

have an impact on cell cycle, cell growth, chromatin decondensation, 
cell differentiation, apoptosis, and angiogenesis in several cancer 
cell types [3]. Beyond cancer, modulators of HDAC activity are also of 
interest in other therapeutic areas, including cardiovascular diseases, 
inflammation, metabolic disorders, and neurological diseases [4,5]. 
In man, HDACs are commonly divided into four classes based on 
their homology to yeast HDAC proteins (Class I and IV vs. yeast 
Rpd3, Class II vs. yeast Hda1, and Class III vs. yeast Sir2). Among 
them, Class I HDACs, which comprise four isoforms (HDAC1-3 and 
8) mainly found in the nucleus, have received extremely attention for 
the development of the novel anticancer targeted agents [6].

Up to date, two HA analogs have been approved for cancer therapy by the 
US food and drug administration (FDA), such as vorinostat (also known as 
suberoylanilide HA, [SAHA]) developed by Merck and Co., Inc., for use in 
patients with cutaneous T-cell lymphoma (CTCL), and belinostat developed 
by Spectrum Pharmaceuticals for the treatment of relapsed or refractory 
peripheral T-cell lymphoma [7]. Besides vorinostat and belinostat, several 
other HAs targeting HDACs have been subjected to different stages of 
clinical studies, such as abexinostat (PCI-24781), pracinostat (SB939), 
resminostat (RAS2410, 4SC-201), givinostat (ITF2357), quisinostat 
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(JNJ-26481585), panobinostat (LBH589), and CUDC-101 [7]. All of them 
share common pharmacophore features so that they can appropriately 
interact with HDACs in the active site region of the enzymes. In general, 
they include three parts: (1) A capping group (cap) generally consists of 
complex aromatic systems, (2) a zinc-binding group (ZBG) to chelate the 
catalytic Zn2+ ion, and (3) a linker preferably bearing a n-alkyl, vinylic of 
aryl substituents that connect the Cap and ZBG groups [8].

The search for promising HDAC inhibitor candidates containing HA 
moiety remains one of the most active areas in medicinal chemistry 
today [3]. For the rational design of novel HAs, quantitative structure-
activity relationship (QSAR) approaches have been extensively explored 
over the past 10 years [9]. QSAR models are generally developed based on 
the mathematical functions that relate the biological activity of a series of 
compounds with a set of appropriate molecular descriptors (MDs). Once 
constructed, QSAR models can be used to predict the bioactivity of newly 
designed compounds based on the descriptors calculated. Furthermore, 
the information translated from MDs is useful to rationalize the drug 
design process [10]. So far, several QSAR models predicting HDAC 
inhibitory activity have been developed for HA derivatives. The most 
relevant QSAR studies are summarized in Table 1. Note that, our survey 
only included the regression models developed for predicting HDAC 
inhibition activity of HA derivatives (compounds with CONHOH moiety).

As can be appreciated from Table 1, numerous two dimensional (2D) 
and 3D QSAR studies have been carried out to accurately predict 
HDAC inhibitory activity of novel HAs, as well as to identify key 
structural elements governing the bioactivity of analyzed compounds. 
However, previous studies on HAs have not focused on the inhibition 
activity toward specified HDAC isoform. In this aspect, QSAR model 
developed based on a specific HDAC isoform might be of pivotal 
importance to design potent, isoform-selective HDAC inhibitors [9,21]. 

In addition, various models were developed with very small dataset 
(<10 compounds) [18]. Consequently, the statistical significance and 
applicability of developed model become meaningless.

According to the report of Katritzky et al. [14], knowledge about the 
3D geometrical conformation of compounds, including the important 
electrostatic and steric interactions, remained a key factor determining 
the accuracy of QSAR models. Pseudoreceptor methods, mainly 3D-QSAR 
techniques such as COMFA, COMSIA, and GOLPE, have been employed 
and showed higher performance in comparison with 2D-QSAR [14,18]. 
In this regard, structure-based methods, such as docking or molecular 
dynamics [22], are very useful to identify the “active conformation” of 
the ligands in the active sites of HDAC enzymes.

Taking all above issues into consideration, this study attempts to 
develop QSAR models able to accurately predict the inhibitory activity 
toward histone deacetylase-2 enzyme (HDAC2), which is an important 
isoform within Class I HDAC family [23]. To identify the active 
conformation of the ligands, HAs were firstly docked into the X-ray 
crystal structure of HDAC2 protein. Theoretical MDs were calculated for 
the 3D conformers and were used to find the correlation with bioactivity 
(half maximal inhibitory concentration [IC50]) through a multiple linear 
regression approach coupled with the genetic algorithm (GA-MLR). 
Finally, based on structural information extracted from QSAR models, 
several novel HA derivatives were designed and assessed the HDAC-2 
inhibition activity.

METHODS

Dataset
A dataset of 46 HA derivatives was used to model the HDAC2 inhibitory 
activity (Fig. 1). These compounds were recollected from published 

Table 1: List of some QSAR models previously developed to predict HDAC inhibitory activity of hydroxamic acids

HDAC targets Data set size Method Model performance Application Reference
HDAC mixture 47 SAHA-like 

HAs
2D-QSAR Best model 

R2=0.61, 
F=17.18

To determine structural 
characteristics essential for HDAC 
inhibition

Xie et al. [11]

Not specified 
HDAC 

29 HAs CoMFA
CoMSIA

R2=0.98, 
R2

cv=0.60
R2=0.95, 
R2

cv=0.59

To predict HDAC inhibition activity Guo et al. [12]

Not specified 
HDAC

57 HAs CoMFA
CoMSIA

R2=0.91, 
R2

cv=0.50
R2=0.98, 
R2

cv=0.53

To predict HDAC inhibition activity Juvale et al. [13]

HDAC1/2 
mixture

36 HAs 2D-QSAR
Docking
3D-QSAR

R2=0.77, 
R2

cv=0.72
R2=0.81, 
Q2=0.62, 
R2

ext=0.72

To predict HDAC inhibition activity
To determine structural 
characteristics essential for HDAC 
inhibition

Katritzky et al. [14]

Maize HDAC2 25 HAs GOLPE
3D-QSAR 

R2=0.96-98
Q2=0.81–85

To predict HDAC inhibition activity Ragno et al. [15]

Not specified 
HDAC

55 HAs Quantitative 
pharmacophore

Q2
test=0.89 To determine structural 

characteristics essential for HDAC 
inhibition

Chen et al. [16]

Not specified 
HDAC

45 HAs 2D-QSAR R2=0.78, 
R2

adj=0.72, 
Q2=0.68

Virtual screening of HDAC 
inhibitors

Melagraki et al. [17]

Not specified 
HDAC

Varied data size 
(from 5-32 HAs)

2D-QSAR R2=0.72–0.85
Q2=0.50–0.78

To predict HDAC inhibition activity Pontiki and Hadjipavlou-
Litina [18]

HDAC2 50 HAs CoMFA
CoMSIA

R2=0.98, 
R2

cv=0.61
R2=0.99, 
R2

cv=0.62

To design novel HDAC2 inhibitors Xiang et al. [19]

Maize HDAC2 34HAs 2D-QSAR
3D-QSAR

R2=0.85, 
Q2

ext=0.79
To predict HDAC inhibition activity Sharma and Sharma [20]

QSAR: Quantitative structure-activity relationship, HDAC: Histone deacetylase
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papers [24-28], taking into account the homogeneity of experimental 
conditions. Accordingly, the half maximal inhibitory concentration 
(IC50,  μM)  was  determined  using  fluorogenic  HDAC  assay  kit  (BPS 
bioscience) with the same protocol [29]. In some experiments, 
SAHA was used as reference compound. Its IC50 values showed slight 
variability  ranging  from 0.197  to 0.265 μM  [24,26,27]. Therefore, we 
took the mean value, discarding those out of the (mean±SD) range. All 
the data were transformed into logarithmic form (pIC50=lgIC50).

Preparation of the ligands
The structures of 46 molecules were generated using Marvinsketch 
version 15.11.9 [30]. The 3D structures of the compounds were 
created and subsequently subjected to energy minimized to within an 
rms gradient of 0.1 kcal/mol/Å using MOE 2009.10 package, setting 
the force field to the 94s variant of the Merck molecular force field 
94s [31]. Various studies have suggested negative hydroxamate-Zn2+ 
coordination in the active site of HDACs [32] and linked with several 
experimental results. Therefore, the HA inhibitors were deprotonated 
after importing the 3D structures to MOE database.

Selection and preparation of the protein structure
It has been shown that histone-H3 and histone-H4 deacetylation is 
regulated principally by HDAC2 and HDAC3. Recently, the crystal 
structure of HDAC2 in complex with SAHA (PDB ID: 4LXZ) has been 
reported by Lauffer et al. [23], so we decided to select this structure as 
a docking template to study the interaction between HAs and HDAC2. 
After removing SAHA from the complex structure, the enzyme was 
prepared using ICM-pro version 3.8–3 [33]. All water molecules were 
removed, and the polar hydrogen atoms were aided to the protein. The 
active site of the enzyme includes key residues His145, His146, Asp181, 
His183, and Asp269, which were appropriately protonated according to 
the general catalytic transformations of zinc metalloenzymes described 
by Pottel et al. [34]. Afterward, the binding site was energy minimized 
applying AMBER99 force field based on truncated Newton method 
in MOE (convergence criteria of 0.01 Å root-mean-square deviation 
[RMSD]) [31].

Docking and binding affinity estimation procedures
For the docking experiments, the flexible-ligand rigid-protein 
simulations were performed using MOE [31], where flexible ligand 
conformations were generated using the Monte Carlo algorithm. The 
finally selected poses were rescored using London scoring and then by 
affinity scoring functions to estimate the free energy of binding of the 
ligands from the given poses (dG, kCal/mol) [35,36]. In the refinement 
stage, the energy minimization of the system was carried out using the 
molecular mechanics force-field method [31]. The pose with the best 
refining score of each ligand was retained and saved as MOL2 format 

using Chimera [37]. All the other parameters were kept as default. This 
approach allows identifying suitable conformation for HA derivatives, 
which were further used in the MLR computation.

QSAR model development
In the present study, the parameters corresponding to 0-1D, 2D, 
and 3D molecular descriptors (MDs) were computed by Dragon 6.0 
software [38]. In summary, a total of more than 1400 MDs, belonging to 
18 classes, were calculated. By disregarding descriptors with constant 
or near constant values inside each class, a subset of 985 descriptors 
was remained. Besides, to decrease the redundancy existing in the 
descriptor data matrix, the descriptor correlation with each other was 
examined, and the collinear descriptors (r>0.9) were detected. Finally, 
only 617 descriptors were retained for each compound.

After calculating MDs, dataset was randomly separated into two parts: 
Training and test sets, which correspond to 75% (34 compounds) and 
25% (12 compounds), respectively. Training set is for QSAR model 
development, and the test set was set aside to assess the predictive 
power of the final model.

MLR technique was used for model construction. Basically, MLR analysis 
consists of deriving a mathematical function (1), which best describes 
the activity Y (in this case is proteasome inhibitory potency LogIC50), as 
a linear combination of a subset of X-variables (the selected molecular 
descriptors) with the regression coefficients bn and the intercept b0.

Y=bo+b1X1+b2X2+…+bnXn (1)

In this study, a MLR approach coupled with the GA-MLR was 
performed using Mobydigs package versus 1.1 [39]. Accordingly, a 
random population of binary chromosomes (descriptor subsets) 
was generated. At each chromosome, the number of gen is equal to 
the number of descriptors. Values 1 or 0 is used to assign the gene 
in which corresponding descriptor was included or not, respectively. 
Subsequently, the next generation of the population is reproduced 
based on three operations: Selection, cross-over, and mutation [40]. 
The fitness criterion of squared predictive correlation coefficient 
(QLOO

2) provided by the leave-one-out cross-validation (LOO-CV) 
procedure was used for population selection. In the crossover step, 
each pair of chromosomes is individually divided, mutually exchanged, 
and merged. The probability of crossover (pr) was randomly set to be 
30, 50, 70, and 90%. In the third operation, a binary bit string randomly 
selected from chromosomes will be mutated. Hence, the probability of 
mutation (pm) was set at low level (0.4, 0.6, and 0.8%) to improve the 
overall fitness in the population of chromosomes. Finally, a population 
of 100 regression models was retained taking into account the QLOO

2 

Fig. 1: Structures and bioactivity of hydroxamic acids included in the dataset
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coefficients. The GA was stopped when 90% of generation took the 
same fitness.

The principle of maximal parsimony (Occam’s razor) was taken into 
account as a strategy for model selection [41]. Thus, we selected the 
models with the highest performance but having a few parameters (bi) 
as possible.

Model validation and applicability domain
Goodness of fit was assessed by examining the determination 
coefficient, R2, the adjusted determination coefficient, RAdj

2, the 
standard deviation (s), Fisher’s statistic, F, as well as the ratio between 
the number of compounds and the number of adjustable parameters in 
the model, known as the ρ statistics. Besides these classic regression 
parameters, other important indices were adopted, i.e., the Kubinyi 
function and Akaike’s information criterion [42], which give enough 
criteria for comparing models with different parameters, number of 
variables, and number of points. The robustness and predictive ability 
of the model were evaluated by LOO-CV and bootstrapping analyses. 
LOO-CV procedure consists of removing one data point from the 
training set, constructing the model only on the basis of the remaining 
training data, and then testing on the removed point. In this way, all of 
the training data points were tested and Q2

LOO then calculated. In the 
bootstrapping procedure, K n-dimensional groups are generated by a 
randomly repeated selection of n-objects from the original dataset [43]. 
The model obtained on the first selected objects is used to predict the 
values for the excluded sample, and then, Q2

Boots is calculated for each 
model. The bootstrapping was repeated 5000 times for each validated 
model.

For further application of QSAR models, the applicability domain 
(AD) was taken into account. The leverage approach was used to 
establish model AD [44]. Data outside the domain will be considered as 
extrapolated and predicted with low certainty.

The leverage (hi) [44] measures the distance from one molecule to the 
whole training set (TS) in the descriptors space and is calculated as 
follows:

hi=ti(TTT))−1tiT (i=1,…N) (2)

Where ti is the descriptor vector of that compound and T is the model 
matrix derived from the TS descriptor values. A “critical leverage” value 
(h*) is generally fixed at 3×p/N, where p is the number of model variables 
plus one, and N is the number of the objects used to calculate the model.

Finally, to visualize the AD of a QSAR model, the plot of standardized 
cross-validated residuals (Stand. R) versus Leverage (Hat diagonal) 
values (h) also known as the Williams plots can be used for an 
immediate and simple graphical detection of both the response outliers 
(i.e., compounds with standardized residuals greater than three 
standard deviation units) and structurally influential chemicals in 
mode (h>h*) [45].

Drug-likeness and toxicity profiling
Taking into account the importance of drug-likeness evaluation in early 
drug discovery phases, some end points related to the absorption, 
distribution, metabolism, excretion, and toxicity (ADME-Tox) processes 
were calculated using ADMETsar server (http://lmmd.ecust.edu.cn/
admetsar1/) [46] and Volsurf 1.0.4+ software [47]. The important 
questions analyzed were as follows: Could the new compounds be 
applied through oral administration? Which are the main metabolism 
pathways of the compounds through intestinal and hepatic cells? and 
Do the molecules present any risk factor?

RESULTS AND DISCUSSION

Docking results
In this study, the structure coordinates of human HDAC2 protein 
reported by the study of Lauffer et al. (PDB ID: 4LXZ) that showed a 

good stereochemical quality were used as docking protein model [23]. 
In detail, the reported resolution of the entry is 1.85 Å and the reliability 
factor, which presents the agreement between the crystallographic 
model and the experimental X-ray diffraction data, is 0.161. According 
to the Protein Data Bank, the protein structure comprises 3 chains 
(A, B, and C) with the same length (368 amino acids). In particular, 
chain A coincides with the core domain of UniProt sequence Q92769 at 
residues number 8 up to 376. This chain was used for docking assays.

The first step was to demonstrate the suitability of ligand preparation 
procedures and docking protocol by redocking the X-ray cocrystal 
hydroxamate HDAC2 inhibitor (SAHA) into the active site. The 
accuracy of pose coordinates between the native and redocked ligand 
was evaluated by the RMSD. The results showed that the difference 
between cocrystallized and docked SAHA compounds is insignificant, 
displaying quite low value of RMSD (0.672 for coordinates of atoms 
involved in hydrogen bonding and 1.127 for coordinates of all heavy 
atoms). It is important to note that RMSD value <2.0Å between the 
docked ligand and the X-ray pose has been widely taken into account 
as acceptance for an accurate docked structure, according to Gohlke 
et al.’s criterion for examining the errors in crystallographic data [48]. 
In addition, the conservation of hydrogen bond interactions with the 
residues Asp104, His145, His146, Asp181, and Tyr308, as well as 
hydrophobic interactions with Phe155 and Phe210, can be observed 
(Fig. 2a). Especially, the similarly close distances (<2.5 Å) between 
hydroxamate groups and zinc ion, which play an important role in the 
zinc-binding motif of HDAC inhibitors [34], are conserved. Considering 
these results, our protocol is suitable for using in further docking 
experiments.

In the next steps, the remaining hydroxamic acids in the database 
were docked into the HDAC2 binding site following the protocol 
described above. The results highlighted the key interactions, 
which include: Non-covalent interactions of hydrogen bonding 
and electrostatic and van der Waals interactions. The active site 
comprises a narrow pocket located deep within the protein and 
contains the zinc metal cofactor. The metal was pentacoordinated 
by His183, Asp181, and Asp269 [32]. Docking results also showed a 
bidentate coordination through the carbonyl and hydroxyl groups of 
the ligand hydroxamate moieties (Fig. 2b). In addition, the carbonyl 
oxygen of the HA group formed an H bonding with the hydroxyl 
group of the Tyr308 residue, while the hydroxyl of the HA group 
formed another H bond with His146. In case of SAHA and some other 
compounds, this H bond was instead donated by His145. According to 
the catalytic mechanism of HDAC inhibition, His145, His146, Asp181, 
His183, Asp269, and Tyr308 are responsible for the stabilization of 
the substrate in the binding site and form part of the charge relay 
system necessary for the zinc-dependent hydrolysis of the acetylated 
lysine substrates [49]. Moreover, hydrophobic interactions involved 
in holding ligands within the active site include interactions between 
the linker moieties and aromatic rings of Phe155 and Phe210. In 

Fig. 2: (a) Superposition of co-crystal (yellow) and redocked 
suberoylanilide hydroxamic acid (SAHA) structures (green) 

at the histone deacetylase2 (HDAC2’s) binding site. (b) Ligand 
alignment inside the binding pocket of HDAC2. Compounds 

are present in line and SAHA (green) in stick styles. Common 
hydrogen bond interactions are shown in green dash-line

ba
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addition, bulky aromatic systems of capping groups formed both van 
der Waals and H bond interactions with numerous residues at the rim 
of the pocket, such as Pro34, Glu208, Tyr209, and Arg275. Finally, it 
is important to note that the docking affinity dG scores of hydroxamic 
inhibitors ranked ligands in accordance with the experimental IC50 
data.

Development and selection of GA-MLR QSAR-models
The results from docking assays revealed the preferred orientation of HA 
derivatives in the active site of HDAC2. Such the “active conformations” 
were used for further development of QSAR models.

Herein, MLR models were obtained employing GA for the feature 
selection process. The fitting and predictive criteria for the best seven 
models after 105 iterations are given in Table 2. Note that, the maximum 
number of variables to be included in the final model was set to 6 as 
we have 34 observations in the training set, taking into account the 
Austin’s criteria (5 × number of variables ≤ number of observations) to 
avoid overfitting problem [50].

The best models were further analyzed and compared based on 
the quality of the statistical parameters. These parameters include 
correlation between the variables and the response (R2, Kxy), robustness 
of the models (Q2

LOO, Q2
Boot), significance of the model (p), and low 

standard deviation (s), among others.

As can be revealed from Table 2, model M1 displayed the highest 
performance and was selected as the final model for further application. 
The mathematical formula is given as follows:

pIC50=1.527+1.099 ve1_B(m)−0.053 rdf105m−0.190 Mor02m+14.166 
R7m+−96.459 R5v++0.492 B07[N−O]  (3)

The model presented very good fit with a R2 of 0.90 and adjusted R2
adj 

of 0.88, which is significantly higher than the other models. In addition, 
Friedman index (LOF) computed for this model is quite low (0.078), 
indicating a lack of overfitting problem [51].

The autocorrelation between descriptors was checked through Pearson 
correlation matrix and the correlation among descriptors (Kxx). As 
the results, no significant correlation between MDs was detected, as 
the highest pairwise correlation is between VE1_B(m) and Mor02m 
(0.54) and the Kxx=0.34 (Table 3). In addition, variance inflation factors 
(VIF) and tolerance values were computed for the descriptors included 
in the model M1. Based on the results, we confirm the absence of 
multicollinearity in the finally selected model [52].

Validation of QSAR model
The stability of the models was evaluated using internal validation 
procedures. At first, the statistical parameters of the LOO-CV were 
checked. According to the obtained results, it is remarked that the 
internal predictions are good because the variance explained in the 
prediction by LOO (Q2

LOO=0.856) is comparable with an R2 coefficient.

Another validation technique included in Mobydig is bootstrapping [39], 
which used the bootstrap resample approach to evaluate the behavior 
of the model in different training data distribution. Unsurprisingly, the 
average bootstrapping accuracy Q2

Bootrap was 0.803, quite similar to R2, 
which referred to a very stable model.

At last, to demonstrate that the model was not the result of a chance in 
fitting given data, the Y-scrambling procedure was employed, placing 
the answers (dependent variable) at random, keeping all descriptors 
(independent variables) in the model, and then, performing whole 
model building procedure n times again [53]. If the model performance 
decays dramatically, it is a sign of a lack of chance. Mobydig provides 
the option to process Y-scrambling with extent iterations (n >1000) 
and output the average fitting (R2

Y-scr) and cross-validation (Q2
 Y-scr) 

parameters. As can be observed in Table 2, the results of Y-scrambling 
procedure allow us to confirm the quality of correlation found, as 
the parameters are much lower than the original values of the model 
(R2

Y-scr=0.116 and Q2
 Y-scr=−0.433).

Taking all above results into consideration, we confirmed that the 
model M1 has a good fit, robustness, and stability. Finally, the predictive 
ability of the model was checked using an external set of 11 remaining 
HA derivatives. Before external validation of this model, applicability 
domain was defined. As can be seen in Fig. 3b, the critical leverage was 
determined as 0.6, and no molecules from the external test set were 
detected out of the AD of the model. The external prediction accuracy of 
the model M1 was more than 0.76, similar to the cross-validation and 
bootstrapping validation, suggesting a suitable goodness of prediction 
ability of the model.

Mechanistic interpretation
As can be seen in the mathematical equation (3), the model M1 includes 
6 variables. Table 4 summarized the meaning of these MDs. At first 
sight, there existed a predominant role of 3D descriptors, which partly 
explained the importance of finding the active conformations through 
docking. Given the difficulty of interpreting 3D descriptors involved 
in QSAR model, a mechanistic interpretation of these variables was 
carried out as well.

Table 2: Performance of the best model series constructed by GA

Model No var.* R2 Training R2
adj Q2

LOO Q2
Bootrap Q2

ext R2Y-scr Q2 Y-scr Kxx s F
M1 6 0.904 0.884 0.856 0.803 0.763 0.116 −0.433 0.337 0.206 0.441
M2 6 0.866 0.838 0.819 0.744 0.758 0.109 −0.416 0.413 0.243 0.302
M3 6 0.845 0.811 0.765 0.676 0.751 0.141 −0.396 0.390 0.262 0.254
M4 5 0.844 0.817 0.783 0.723 0.764 0.099 −0.316 0.398 0.258 0.313
M5 5 0.849 0.823 0.788 0.726 0.704 0.087 −0.379 0.352 0.254 0.326
M6 5 0.788 0.778 0.705 0.592 0.695 0.092 −0.344 0.406 0.301 0.216
M9 4 0.787 0.758 0.716 0.643 0.709 0.075 −0.297 0.399 0.297 0.277
*Number of variables selected for MLR models. MLR: Multiple linear regression, GA: Genetic algorithm

Table 3: Correlation matrix, tolerance, and VIF of the selected descriptors included in M1 model

VE1_B(m) RDF105m Mor02m R7m+ R5v+ B07[N-O] Tolerance VIF
VE1_B(m) 1 0.557 1.796
RDF105m 0.176 1 0.812 1.232
Mor02m 0.541 0.139 1 0.591 1.692
R7m+ −0.149 0.309 −0.074 1 0.664 1.506
R5v+ −0.422 0.029 −0.474 0.456 1 0.499 2.006
B07[N-O] 0.030 −0.046 −0.069 −0.099 −0.258 1 0.873 1.146
VIF: Variance inflation factor
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RDF105m is a radial distribution function index, which is the probability 
distribution to find an atom in a spherical volume of radius R around a 
group of atoms A. RDF105m indicates that, within a radius of 10.5 Å, 
the RDF value increases with the atomic masses and number of atoms. 
Likewise, Mor02m belongs to the group of geometrical descriptors that 
provide 3D information from the 3D coordinates using the electron 
diffraction transformation to prepare theoretical scattering curves [54]. 
This descriptor is calculated based on the atomic mass in 4th electron 
diffraction signal. Both RDF105m and Mor02m contributed positively 
to the activity.

R7m+ and R5v+ are 3D GETAWAY descriptors, which are derived 
from the molecular influence matrix (MIM) and atoms using atomic 
mass and van der Waals volume weighting schemes, respectively. 
Both descriptors selected belong to R-GETAWAY subfamily where 
the MIM is combined with the geometry matrix in a influence/
distance matrix, [R], defined as: [(hiihjj)/rij]ij where the diagonal 
elements hii and hjj are termed leverages and represent the influence of 
each atom in determining the shape of the molecule. Each off-diagonal 
element hij represents the degree of accessibility of the jth atom to 

interactions with the ith atom [54]. Interestingly, R7m+ and R5v+ are 
associated with large and opposite coefficient signals. R5v+ contributes 
positively to the activity, while R7m+ has a negative contribution to the 
HDAC2 inhibitory bioactivity.

There are two topological descriptors negatively contributed to the 
activity, including VE1_B(m) and B07[N-O]. VE1_B(m) is a 2D matrix-
based descriptor, derived from a Burden matrix weighted by mass, and 
depends in a complex way from molecular size, shape, and presence of 
heavy heteroatoms and multiple bonds. B07[N-O] in turn is a 2D atom 
pairs descriptor, which is equal to 1, if there is at least one pair of N and 
O atoms separated by 7 bonds [54].

Rational design of new HA derivatives
Based on the previous discussion of the role of the molecular descriptors 
involved in the QSAR model, six new hydroxamate series were designed 
based on the structures of compounds in the training set (Fig. 4).

The design strategy was mainly focused on the Cap group. It is 
postulated that Cap modifications could lead to the isoform selective 
inhibitory activity of HAs and that the complexity of aromatic 

Fig. 4: Chemical structures of newly designed 36 hydroxamic acids

Table 4: Symbols and meaning of all the MD variables selected by the best model

Symbol Descriptor family Meaning
VE1_B(m) 2D (burden) matrix-based descriptors Coefficient sum of the last Eigen vector from burden matrix weighted by mass
RDF105m 3D RDF descriptors Radial distribution function - 105/weighted by mass
Mor02m 3D-MoRSE descriptors Signal 02/weighted by mass
R7m+ 3D GETAWAY descriptors R maximal autocorrelation of lag 7/weighted by mass
R5v+ 3D GETAWAY descriptors R maximal autocorrelation of lag 5/weighted by van der Waals volume
B07[N-O] 2D atom pairs Presence/absence of N - O at topological distance 7

Fig. 3: (a) Experimental versus predicted p half maximal inhibitory concentration values for the M1 model, (b) Williams plot predicted by 
the final M1 model. Tr: Training set, Te: Test set, and P: Prediction set

ba
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capping group might positively contribute to the activity [21]. 
Therefore, 6 new aromatic systems were incorporated into the 
Cap in this study, including 2,3-dihydro-1H-benzo[de]isoquinoline 
(1a-g), 6-(5H)-phenanthridinone (2a-g), 9H-fluorene (3a-e), 
4H-cyclopenta[def]phenanthrene (4a-g), 2-substituted isoindoline 
(5a-e), and 2’H-dispiro[[1,3]dioxole-2,1’-indene-3’,2’’-[1,3]dioxole] 
(6a-e).

Before evaluating the bioactivity of newly designed HAs, we calculated 
their leverage and standardized residuals to detect possible compounds 
outside the AD. As can be seen in Fig.3b, compound 5c was identified 
as outlier, so it was excluded from the bioactivity screening assays by 

QSAR model to avoid unreliable extrapolation. The predicted IC50 of 
the remaining 35 compounds was shown in (Fig. 5). In addition, to 
select the best inhibitors, the energy of binding affinity calculated was 
considered.

Five compounds (2f, 4e, 6b, 6e, and 6f) were identified as potent 
inhibitors as their predicted IC50  values  were  all  below  0.1  μM. 
Especially, compounds 4e and 6d displayed a five-to seven-fold more 
potent than reference drug SAHA (experimental IC50=0.2–0.3  μM). 
The docking affinity values computed for these 5 compounds ranged 
from  −8.3  to  −9.9  kCal/mol,  significantly  higher  than  that  of  SAHA 
(dG=−7.4 kCal/mol).

Fig. 5: Predicted half maximal inhibitory concentration (μM) by quantitative structure-activity relationship model and binding affinity dG 
(kCal/mol) by MOE docking experiments for 35 hydroxamic acids designed

Fig. 6: Interactions of four compounds (2f, 4e, 6b, and 6e) with the active site residues of histone deacetylase2
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Docking results showed that all the compounds formed numerous 
H bonds with the residues in the active site of HDAC2. Commonly, 
4 H-bonds were generated between HA group and His145, His146, 
Asp181, and Tyr308. This group also interacted with zinc ion in the 
same manner that SAHA did. A different situation was observed when 
analyzing hydrophobic interaction. The designed compounds have 
bulky hydrophobic Cap group that could form extent pi-alkyl stacking 
interactions with Asp104, Leu276, and Phe210 (Fig. 6). Especially, 
compounds 6b, 6d, and 6e exhibited a very high binding affinity and 
intensive hydrophobic interactions. The substitution of styrene moiety 
at the linker clearly enhanced interactions with the residues in the 
narrow tunnel of the binding pocket, including Phe155 and Phe210. 
Numerous studies have indicated that these pi-pi stacking interactions 
play significant role for increasing the bioactivity of HAs [3,8,27].

At last, we selected five most bioactive compounds to further investigate 
the ADME-Tox properties (Table 5). All the compounds exhibited 
acceptable intestinal absorption profile. However, their solubility 
appears to be a limiting factor. Intestinal membrane permeability was 
predicted to be moderate-to-high, according to 3Prule developed by 
Pham-The et al. [55]. Compound 2f showed good disposition ability 
in the central nervous system and was predicted as non-substrate 
characteristics of P-glycoprotein, a member of the MDR/TAP subfamily 
involved in multidrug resistance [56]. However, compounds 2f and 
4e were identified as potential substrates of cytochrome CYP3A4 
enzyme [46]. According to the three lead-likeness rules of Teague [57], 
they were identified as non-lead compounds.

On the other hand, compound 4e presented numerous toxic risks, 
including genotoxicity against Ames test, reproductive toxicity against 
fish fertilizer test, and bioaccumulation in Tetrahymena pyriformis [46]. 
Compounds 6b, 6d, and 6e displayed similar toxicity to 4e. However, 
they were predicted as possible lead compounds and non-substrates of 
cytochrome enzymes using Teague’s rules and ADMEsar server [46,57].

Taking all together, we concluded that 2f, 4e, 6b, 6e, and 6f displayed 
certain advantages and limitations (related to possible first-pass 
metabolism and toxicity) for being developed as drug candidates. 
In particular, compounds 6b, 6d, and 6e could be considered as a 
good starting point for further design and synthesis of novel HDAC2 
inhibitors.

CONCLUSION

The present study has demonstrated a versatile strategy for combining 
structure and ligand-based approaches to model the inhibition activity 
of HDAC2 enzyme. As the main results, a QSAR model was obtained on 
the basis of the active conformations of hydroxamates on the active 
site of HDAC2 identified by docking experiments. The model showed 
very encouraging performance according to the numerous internal and 

external validation procedures. Another important result was the design 
of several novel hydroxamates targeting HDAC2. From the structures 
design, we identified five hit compounds with bioactivity significantly 
more potent than SAHA, a commercial drug currently used for cancer 
treatment. Molecular modelling and ADME-Tox profiling revealed that 
these compounds should be considered for further development of new 
potent HDAC inhibitor.
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