ANTIOXIDANT ACTIVITY AND LIPOXYGENASE INHIBITORY ASSAY WITH TOTAL FLAVONOID CONTENT OF GARCINIA LATERIFLORA BLUME LEAVES EXTRACT

SISMITA AVELIA, MARISTA GILANG MAULDINA, BERNA ELYA*
Department of Phytochemistry and Pharmacognosy, Faculty of Pharmacy, Universitas Indonesia, Jakarta, Indonesia.
Email: bernela.elya@gmail.com

Received: 21 April 2017, Revised and Accepted: 13 July 2017

ABSTRACT

Objective: Garcinia lateriflora Blume has been reported to have antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl method with methanol, ethyl acetate, and n-hexane extracts and inhibitory concentration 50% (IC₅₀) levels of 6.18, 8.03, and 156.8 µg/mL, respectively. Meanwhile, there has been no literature regarding G. lateriflora Blume's lipoxygenase inhibition activity. The aim of this study was to determine the potential antioxidant activity and lipoxygenase inhibition activity of three leaf extracts of G. lateriflora Blume.

Methods: These studies test methods involve an assessment of antioxidant activity using the ferric reducing antioxidant power method, an assessment of lipoxygenase inhibition activity through the in vitro method, and a qualitative analysis of flavonoid and total flavonoid content using thin-layer chromatography and the AlCl₃ colorimetric method to reveal the most active extract.

Results: Based on the assessment for methanol, ethyl acetate, and n-hexane, the results showed that the effective concentration 50% levels of the antioxidant activity of G. lateriflora Blume leaves extract were 9.567, 16.555, and 50.550 µg/mL, respectively. Furthermore, the IC₅₀ levels of the lipoxygenase inhibition activity were 0.693, 0.793, and 1.316 µg/mL, respectively. The most active extract for both of the tests was methanol extract, which has a total flavonoid content of 6.298 mg quercetin equivalents/g.

Conclusions: Based on the test results, it can be concluded that G. lateriflora Blume leaves extracts exhibit antioxidant and lipoxygenase inhibition activities, with methanol extract as the most active extract, containing more flavonoid than the other two extracts.

Keywords: Antioxidant, Ferric reducing antioxidant power, Garcinia lateriflora Blume, Flavonoid, Lipoxygenase.

INTRODUCTION

Plants are beneficial and known to have many bioactive compounds that are useful for treating a variety of diseases. One of these compounds is flavonoid, which exerts a significant effect as an anti-inflammatory and antioxidant that can reduce free radicals [1]. One of the plants that exhibit significant antioxidant activity and lipoxygenase inhibition activity is a species of Garcinia. Garcinia is the largest genus within the Clusiaceae family, having approximately 400 species, and it is widespread in Asia, Africa, South America, and Polynesia. Garcinia plants are rich in secondary metabolites, including triterpenes, flavonoids, xanthones, and phloroglucinols, which have pharmacological uses and produce anti-inflammatory, antibacterial, antiviral, anti-HIV, antidepressant, and antioxidant effects [2]. Garcinia lateriflora Blume is a species of the genus Garcinia that demonstrates antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl method to reveal the inhibitory concentration 50% (IC₅₀) levels of methanol, ethyl acetate, and n-hexane, respectively, with an IC₅₀ value of 0.3 mM [3]. As for G. lateriflora Blume, there is no prior literature regarding its lipoxygenase inhibitory activity. This study was conducted using the FRAP method to obtain additional scientific data regarding antioxidant activity and to determine the lipoxygenase inhibition potential of G. lateriflora Blume leaves extract. The flavonoid content of each extract was determined qualitatively through using thin-layer chromatography (TLC). The total flavonoid content was then quantitatively determined using AlCl₃ methods to determine the most active extract.

METHODS

Antioxidant activity with FRAP method
Measurements of antioxidant activity using the FRAP method are depicted in Table 1.

The mixture solution was incubated for 30 minutes at 37°C, and then, the absorbance of the solution was measured using a UV-Vis spectrophotometer at a wavelength of 596 nm. The percentage of the capacity was calculated using the following equation:

\[
\% \text{ capacity} = \frac{1 - T_s}{T_s} \times 100\%
\]

In this equation, Tₛ is transmittance, absorbance = - log Tₛ, and Aₘ is the absorbance of the standard/sample solution minus the absorbance of the control solution. The effective concentration 50% (EC₅₀) levels were calculated using the linear regression equation (Microsoft Office Excel) and the non-linear equation (GraphPad Prism 7), and the concentration of the sample was represented by the x-axis while the percent capacity was represented by the y-axis.

Lipoxygenase enzyme inhibition assay
For the lipoxygenase inhibition assay, we optimized a pH borate buffer solution, stop solution, and enzyme and substrate concentrations. The measurement of lipoxygenase activity was performed using a...
UV-Vis spectrophotometer instrument following the optimization. The conditions included the borate buffer (0.2 M, pH 8.5), linoleic acid as the substrate (900 μM), lipoxygenase (5,000 units/mL), and methanol as a solvent stop. The inhibition test results of lipoygenase activity are demonstrated in Table 2.

The inhibition percentage of the lipoygenase inhibition value was calculated using the following equation:

\[\text{% Lipoygenase inhibition} = \frac{(A-B)-(C-D)}{(A-B)} \times 100\% \]

In this equation, A is the absorbance of the blank solution (without the enzyme), B is the absorbance of the control blank solution (without the enzyme), C is the absorbance of standard/sample solution (with the enzyme), and D is the absorbance of the control standard/sample solution (without the enzyme). The IC₅₀ value was determined through the use of the linear regression equation (Microsoft Office Excel), and the y-axis demonstrates the concentration of the sample while the x-axis demonstrates the inhibition percentage.

TLC analysis
An analysis by TLC was conducted to determine that G. lateriflora leaves extract have the highest qualitative flavonoid content. The eluent used after the optimization of the mobile phase was n-hexane-ethyl acetate (6:4) for the n-hexane extract, toluene-ethyl acetate-formic acid (61:30:9) for the ethyl acetate extract, and dichloromethane-acetone-water (10:7:1) for the methanol extract. A plate of silica gel 60 F₂₅₄ was used as the stationary phase. In this TLC analysis, quercetin was used as a standard solution, which was treated similarly to the extract. The distance covered by the standard solution (the retention factor of sample) after the plate was sprayed with an AlCl₃:5% reagent at UV 254 and 366 nm.

Determination of the total flavonoid content
For the total flavonoid content, 0.5 mL of the standard and sample solutions were reacted with 1.5 mL of m ethanol for pro analysis, 0.1 mL of 1M sodium acetate solution, and 2.8 mL of distilled water. Mix all the solution and the mixture solution was incubated for 30 minutes at room temperature. The absorption was measured using a UV-Vis spectrophotometer at 435 nm. The calibration curve of the quercetin was required to obtain the linear regression equation so that the level of flavonoid in the sample could be calculated in the quercetin equivalent (QE) with the following equation:

\[\text{Content of total flavonoids} = \frac{C \times V \times FP}{\text{Sample weight}} \]

In this equation, C represents the concentration obtained from the calibration curve (µg/mL), V is the total volume of the test solution (mL), FP is the dilution factor, and the weight of the sample is represented in grams.

RESULTS AND DISCUSSION
Baicalein was used as the positive control to ensure that the testing method was performed and used properly. Baicalein works by binding to the iron element (Fe³⁺) on its trihydroxy, and it undergoes oxidation to slow or prevent the oxidation of the other molecules. Baicalein also acts as an inhibitor suppressing the reaction between lipoygenase and linoleic acid. The inhibition of lipoygenase caused by the presence of a phenolic compound, such as flavonoid, works as a reductive inhibitor. Baicalein is a reductive inhibitor, based on its catechol group, so it can be assumed that the catechol binding of the iron leads to a reduction of the iron active site while baicalein is oxidized into its quinone [6].

Antioxidant activity with FRAP method
The FRAP method is a convenient method for assessing antioxidant activity by reducing Fe (III) to Fe (II) and through complexation with 2,4,6-tripryidyl-s-triazine as a chromogenic ligand, resulting in an intensive blue color [7]. The samples act as antioxidants in the FRAP method if the sample has a redox potential lower than the redox potential of Fe (III)/Fe (II) (0.77 V). Therefore, the sample would have the power to reduce Fe (III) to Fe (II), and these samples would undergo oxidation [8]. In using the FRAP method, the increase of absorbance is proportional to the increase of the antioxidant capacity in the reduction of Fe³⁺ ions [9].

Based on this test, and using baicalein as a positive control, methanol, ethyl acetate, and n-hexane leaves extract of G. lateriflora demonstrates antioxidant activity with EC₅₀ values of 1.165, 9.567, 16.555, and 50.550 µg/mL respectively. The test also demonstrates that the EC₅₀ values of the aforementioned materials can be represented by the following: baicalein > methanol extract > ethyl acetate extract > n-hexane extract. The most active extract is methanol extract (Table 3).

Lipoxygenase inhibition assay
The inhibition activity of lipoygenase is proportional to the concentration of the extract used in the test. The higher concentration of the extract used, the higher the lipoygenase inhibition activity is as well; this means that inhibition will decrease the product of reaction between the substrate and lipoygenase in the form of hydroperoxyoctadecadienoic acid absorbance was measured using a UV-Vis spectrophotometer at 235 nm.

<table>
<thead>
<tr>
<th>Material</th>
<th>Volume (µL)</th>
<th>Blank</th>
<th>Blank control</th>
<th>Standard/sample</th>
<th>Standard/sample control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borate buffer (0.2 M, pH 8.5)</td>
<td>1.700</td>
<td>2.000</td>
<td>1.690</td>
<td>1.990</td>
<td></td>
</tr>
<tr>
<td>Bicalein/extract solution</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Linoleic acid 900 µM</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>The mixture solution was incubated for 10 minutes at 25°C Lipoxygenase solution 10,000 unit/mL</td>
<td>300</td>
<td>-</td>
<td>300</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>The mixture solution was incubated for 15 minutes at 25°C Stop solution (methanol pro analysis)</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Total volume</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Composition of the solution for the lipoxygenase inhibition assay
Based on this, and using baicalein as a positive control, methanol, ethyl acetate, and n-hexane leaves extract of G. lateriflora demonstrates lipoxygenase inhibition activity with IC₅₀ values of 0.250, 0.693, 0.793, and 1.316 μg/mL respectively (Table 4). The test also shows that the IC₅₀ values of the aforementioned materials can be represented by the following: baicalein > methanol extract > ethyl acetate extract > n-hexane extract. The most active extract is methanol extract.

Flavonoid

Antioxidant and lipoxygenase inhibition activities are presumably caused by polyhydroxyl compounds, such as xanthone, tannin, and flavonoid [10]. As a result, in this study, we want to determine the relationship between flavonoid content and antioxidant and lipoxygenase inhibition activities. The flavonoid compound in G. lateriflora leaves extract will presumably reduce Fe³⁺ ions to Fe²⁺ ions, based on its hydroxyl group. The positive results of flavonoid content are demonstrated with yellow, green, or blue fluorescence spots, and these results may become more intensive or change after they are sprayed with a spot spray reagent [11]. The TLC results demonstrate that there is no flavonoid content in the n-hexane extract, but that flavonoid is present in the ethyl acetate and methanol extracts of G. lateriflora leaves. Flavonoid content in ethyl acetate and methanol extract is observed with yellow spots in a chromatogram at UV 366 nm. In methanol extract, there are 12 yellow spots, and in ethyl acetate extract, there are 10 yellow spots (Fig. 1). As a result, based on the chromatogram, the extract with the most flavonoid content is methanol extract.

Total flavonoid content

Based on the antioxidant activity test, which employed the FRAP method, and the inhibition of lipoxygenase assay, methanol extract was determined to be the most active extract, containing the most flavonoid (which was qualitatively by TLC). The total flavonoid content of methanol extract of G. lateriflora was then measured using a UV-Vis spectrophotometer. A standard solution with various concentrations of quercetin was used to create a calibration curve. Based on this test, the linear regression equation for total flavonoid content is $y=0.139x+0.0431$ with $R^2=0.995$. The absorbance of methanol extract of G. lateriflora was plotted against the quercetin calibration curve, and its total flavonoid content was subsequently calculated. The flavonoid content in the sample was expressed in the QE, QE is the equality number of milligrams of quercetin in a 1-gram sample. The result obtained for the total flavonoid content of methanol extract of G. lateriflora leaves is 6.298 mg (QE)/g.

CONCLUSION

Methanol, ethyl acetate, and n-hexane extract of G. lateriflora Blume demonstrate antioxidant activity with the EC₅₀ values of 9.567, 16.555, and 50.550 mg/mL, respectively, as well as lipoxygenase inhibition activity with IC₅₀ values of 0.693, 0.793, and 1.316 mg/mL respectively. Both of these tests demonstrate that the most active extract is methanol extract, which contains more flavonoid than the other extracts in terms of its total flavonoid content (6.298 mg (QE)/g).

REFERENCES

Table 3: The EC₅₀ values of the antioxidant activity of baicalein and G. lateriflora leaves extract

<table>
<thead>
<tr>
<th>Material</th>
<th>EC₅₀ (μg/mL)</th>
<th>Regression equation</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baicalein</td>
<td>1.165</td>
<td>$y=27.75x+17.66$</td>
<td>0.992</td>
</tr>
<tr>
<td>Methanol leaves extract</td>
<td>9.567</td>
<td>$y=3.324x+18.20$</td>
<td>0.995</td>
</tr>
<tr>
<td>Ethyl acetate leaves extract</td>
<td>16.555</td>
<td>$y=2.293x+12.04$</td>
<td>0.991</td>
</tr>
<tr>
<td>N-hexane leaves extract</td>
<td>50.550</td>
<td>$y=18.36x+25.83$</td>
<td>0.993</td>
</tr>
</tbody>
</table>

Table 4: The IC₅₀ values of the lipoxygenase inhibition of baicalein and G. lateriflora leaves extract

<table>
<thead>
<tr>
<th>Material</th>
<th>IC₅₀ value (μg/mL)</th>
<th>Regression equation</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baicalein</td>
<td>0.250</td>
<td>$y=176.7x+5.799$</td>
<td>0.991</td>
</tr>
<tr>
<td>Methanol leaves extract</td>
<td>0.693</td>
<td>$y=26.64x+31.53$</td>
<td>0.996</td>
</tr>
<tr>
<td>Ethyl acetate leaves extract</td>
<td>0.793</td>
<td>$y=29.42x+25.94$</td>
<td>0.991</td>
</tr>
<tr>
<td>N-hexane leaves extract</td>
<td>1.316</td>
<td>$y=18.36x+25.83$</td>
<td>0.990</td>
</tr>
</tbody>
</table>

Fig. 1: TLC results of the three leaf extracts of Garcinia lateriflora at 254 and 366 nm (Q: Quercetin, M: Methanol extract, EA: Ethyl acetate extract, H: N-hexane extract)