PRESENTATION PATTERN AND FUNGAL AGENTS SPECTRUM CAUSING OTOMYCOSIS

KASSIM R. DEKHIL*
Department of Surgery, College of Medicine, University of Al-Qadisiyah, Iraq. Email: kassimraisan2@gmail.com
Received: 07 December 2017, Revised and Accepted: 25 December 2017

ABSTRACT

Objective: This study was aimed to identify the pattern of presentation, influencing factors, and sort of the fungal species, distribution of sex of patients with oto-mycosis.

Methods: Eighty-six patients attended to Ad-Diwaniyah teaching hospital, Iraq were screened for identification of fungi causing oto-mycosis from October 2014 to November 2015. 50 patients were females while 36 patients were males. 12 patients of the total number were with bilateral involvement. Diabetes mellitus, leukemia, chemotherapy, and chemoradiation were the associated systemic diseases which were recorded in patients with oto-mycosis and diabetes mellitus was detected in 53.84% of patients with systemic diseases.

Results: The predominant complaints were pruritus and found in 76 patients (88.73%), discomfort and pain found in 62 patients (72.09%), aural fullness in 48 patients (55.81%), limulus in 34 patients (39.53%), hearing impairment in 50 cases (58.31%), ear discharge in 22 patients (25.58%), and most of the symptoms seen in 36 patients (88.14%). The results showed a total of eight fungal species belong to six different genera, namely, Aspergillus, Candida, Penicillium, Rhizopus, Alternaria, and Cephalosporium were isolated during this study. Among identified fungi, Aspergillus niger was found to be the most prevalent fungal species with 35.71% followed by Candida albicans (27.55%), Aspergillus flavus (10.20%), Aspergillus fumigatus (8.16%), Penicillium digitatum (6.12%) and Cephalosporium species (4.08%), and Rhizopus species (5.1%), while Alternaria alternata had the lowest percentage (6.54%).

Conclusion: Oto-mycosis/mycotic otitis externa is still a common problem and there is a rise in the occurrence of oto-mycosis in latest years, especially in tropical and subtropical humid climates.

Keywords: Oto-mycosis, Fungal agents, Aspergillus, Candida.

INTRODUCTION

Otitis externa is a generic name for inflammation in living external auditory canal (EAC) that may affect part of the canal but can involve the segment of meatus which extends tympanic membrane without spreading to the cleft of the middle ear. The problem usually is infectious which may be bacterial or fungal in origin [1-3] but can be associated with different types of non-infectious constitutional or local skin diseases [4]. Warm, dark, and moist setting of the EAC is the perfect medium for rapid growth of bacteria and fungi [5].

The term oto-mycosis employed to declare a superficial, diffuse fungal infection of the external auditory meatus. It is generally considered to be opportunistic occurring after treatment of bacterial infection and develops unilaterally in healthy persons and in many times a pride posing problem is present [6-8]. It has been found that oto-tis externa (OE) constitutes about 5–20% of ear consultations to otorhinolaryngologists; the majority of these cases are caused by bacteria and in 9–25% fungal agents are the cause and the microorganisms which attribute for these clinical conditions are present as saprobes in nature [9-11]. Oto-mycosis can be presented with non-specific manifestations such as itching, discomfort and otalgia, aural fullness, tinnitus, decrease in hearing and otorrhea [12-15]. There are many factors which may take important roles in fungal infection of the ear like humidity moisture Warmth, darkness and water access into the external auditory canal during bathing decreased immune function, pre-existing ear diseases, cleaning of ear wax, and comorbid conditions such as diabetes and dermatological diseases [16-19].

There are many studies which show that there had been a rise in the occurrence of oto-mycosis in latest years which were linked to the extensive use of antibiotic ear drops, widespread use of corticosteroids, and chemotherapeutic agents [12,20,21]. Secondary overgrowth of fungi is well-known and recognized complication of the use of broad-spectrum antibiotics such as fluoroquinolones and cephalosporins [12,20,22-24]. Prevalence is also influenced by the geographical area, as oto-mycosis is most commonly present in tropical and subtropical humid climates [12,13,25-27]. The most common species encountered in cases of oto-mycosis are Aspergillus and Candida [28-30].

METHODS

This study was conducted in Ad-Diwaniyah teaching hospital, Diwaniyah city, Iraq, from October 2014 to November 2015. All patients presenting to the outpatient department with a clinical diagnosis of oto-mycosis agreed with the inclusion criteria were involved in the study. The inclusion standards were patients of either sex, aged beyond 10 years, and consuming features of fungal oto-tis externa. The patients with a history of chronic otitis media or mastoid cavity were excluded from the study. To determine the genera and species of fungi causing oto-mycosis, the samples from the ear were put with sterile swab sticks which were appropriately categorized demonstrating the source, name and age of patient, data, and time of collection. All patients were not receiving any local or systemic antibiotics or antifungals at least for the last 3 days. The samples were directly taken to the microbiology laboratory of Ad-Diwaniyah teaching hospital.

Diagnosis

The swab sticks were streaked directly on the Sabouraud Dextrose Agar plates and incubated at 25 ± 2 C. The growth was visible within 5–7 days. Each fungal growth was identified based on their morphological and cultural characteristics and microscopic examination was done using lactophenol staining technique [31]. The finding of oto-mycosis was depending on patients giving a green/gray or black discharge besides microscopic examination viewing fungal spores and hyphae. Informed consents were obtained from all patients.
Statistical analysis
Collected data were analyzed using SPSS (statistical package for the social sciences), version 20. Descriptive analysis of means and standard deviation were calculated on all demographic variables, multiple comparisons of paired series of data within groups were done using ANOVA test. Unpaired t-test was then used to evaluate the difference between the two groups. p<0.05 was considered the minimum for statistical significance.

RESULTS
Of total 86 patients with clinical diagnosis of otomycosis who were submitted for the study, 50 patients were females while 36 patients were males. 12 patients of the total number were with bilateral involvement (Fig. 1).

In this study, the predominant complaints were pruritus and found in 76 patients (88.73%), discomfort and pain found in 62 patients (72.09%), aural fullness in 48 patients (55.81%), tinnitus in 50 patients (58.31%), hearing impairment in 50 cases (58.31%), ear discharge in 22 patients (25.58), and most of the symptoms seen in 36 patients (41.86%) (Fig. 2).

About 30 cases (34.88%) of the tolerant provided a past of handling/trauma to the EAC with either stick, metallic picker, pin, or other instruments, 21 patients (24.41%) provided a past of using either antibiotic ear drops, antibiotic-steroid ear drops, or the use of garlic into the ear. Furthermore, 13 patients (15.11%) had related systemic disorders, and 22 patients (25.58%) had no predisposing factors (Fig. 3).

Diabetes mellitus was detected in seven patients (53.84%) of total cases associated with systemic diseases which were recorded in our patients with otomycosis; one case (7.69%) was detected in each of leukemia, chemotherapy, kidney transplant and two cases (15.38%) in patients receiving chemoradiation (Fig. 4 and Table 1).

The results summarized in Table 2 showed a total of eight fungal species belong to six different genera, namely, Aspergillus, Candida, Penicillium, Rhizopus, Alternaria, and Cephalosporium were isolated during this study. Among identified fungi, Aspergillus niger was found to be the most prevalent fungal species with (35.71%) followed by Candida albicans (27.55%), Aspergillus flavus (10.20%), Aspergillus fumigatus (8.16), Penicillium digitatum (6.12%) and Cephalosporium species (4.08%), and Rhizopus species (5.10%), while Alternaria alternata had the lowest percentage (3.06%).

DISCUSSION
Although there is a controversy with respect to whether fungi are the true infective agents versus mere colonization species as a result of compromised local host immunity secondary to bacterial infection, most clinical and laboratory evidence to date supports otomycosis as a true pathogenic entity, with C. albicans and A. niger as the most common

Table 1: Age range of patients

<table>
<thead>
<tr>
<th>Age range in years</th>
<th>Number of patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10–20</td>
<td>4 (4.65)</td>
</tr>
<tr>
<td>21–30</td>
<td>8 (9.30)</td>
</tr>
<tr>
<td>31–40</td>
<td>21 (24.41)</td>
</tr>
<tr>
<td>41–50</td>
<td>18 (20.93)</td>
</tr>
<tr>
<td>51–60</td>
<td>15 (17.44)</td>
</tr>
<tr>
<td>61–70</td>
<td>12 (13.95)</td>
</tr>
<tr>
<td>Above 71</td>
<td>8 (9.30)</td>
</tr>
<tr>
<td>Total</td>
<td>86 (100)</td>
</tr>
</tbody>
</table>

Table 2: Percentage and frequency of fungal infections causing otomycosis

<table>
<thead>
<tr>
<th>Fungal isolates</th>
<th>Number of isolates</th>
<th>Percentage of occurrence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. niger</td>
<td>35</td>
<td>35.71</td>
</tr>
<tr>
<td>C. albicans</td>
<td>27</td>
<td>27.55</td>
</tr>
<tr>
<td>A. flavus</td>
<td>10</td>
<td>10.20</td>
</tr>
<tr>
<td>A. fumigatus</td>
<td>8</td>
<td>8.16</td>
</tr>
<tr>
<td>P. digitatum</td>
<td>6</td>
<td>6.12</td>
</tr>
<tr>
<td>Cephalosporium sp</td>
<td>4</td>
<td>4.08</td>
</tr>
<tr>
<td>Rhizopus sp.</td>
<td>5</td>
<td>5.10</td>
</tr>
<tr>
<td>A. alternate</td>
<td>3</td>
<td>3.06</td>
</tr>
<tr>
<td>Total</td>
<td>98</td>
<td>%855</td>
</tr>
</tbody>
</table>

fungal species isolated [18,32,33]. Classically, fungal infection is the result of prolonged treatment of bacterial otitis externa that alters the flora of the ear canal, mixed bacterial, and fungal infections are thus common. However, the fungus is occasionally the primary pathogen in otitis externa, especially in the presence of excessive moisture or heat [4].

Study by Jackman et al. [22] assessed the contribution of topical antibiotic ear drops to the development of ear fungal infections, their research had revealed that ofloxacin may contribute to the development of otomycosis in two ways; first, this antibiotic is bactericidal to most bacteria in the external auditory meatus, and fungal proliferation may occur because of the lack of competing for bacterial growth, and second, in contrast to other topical antibiotic ear drops which typically have a pH of 3–4, ofloxacin ear drops have a pH of 7, this is a more neutral solution and will not acidify the pH of the external auditory canal skin making it a more optimal environment for fungal growth and proliferation (Aspergillus grows optimally at a pH of 6). These two properties of topical ofloxacin ear drops may explain its association with otomycosis.

The diagnosis of fungal infections of the ear can be challenging given its non-specific symptoms and may be misdiagnosed for other chronic otitis externa conditions. Recurrence after treatment is not uncommon, and eradication of disease can be particularly difficult in some cases [20,34].

Otolaryngologists should remain alert for detection of otomycosis and should consider obtaining culture when this disease is suspected. The findings in this study are in general agreement with the findings observed by earlier workers like Rut et al. [35] and Ozcan et al. [36].

CONCLUSION

Otomycosis/mycotic otitis externa is still a common problem and there is a rise in the incidence of otomycosis in latest years, especially in tropical and subtropical humid climates. It presents with non-specific symptoms and may be misdiagnosed for other chronic otitis externa conditions. The most common species encountered in this study are Aspergillus and Candida.

REFERENCES