INTRODUCTION

In parallel with the increase in the number of confirmed cases of cancer, new modalities of treatment have increased cancer survival and possibilities of cure. However, the treatment may cause several adverse effects including treatment-related cardiotoxicity that may lead to poorer prognosis than cancer itself, and also affect treatment continuation [1,2].

Patients with malignant neoplasm may have underlying cardiovascular diseases, the consequences of which are often exacerbated by the tumor growth stress or its treatment. With the start of new treatments and consequent extended survival time, late effects of cancer treatment can become clinically manifest decades after completion of therapy. The heart’s extensive energy reserve and its ability to compensate for reduced function increase the complexity of diagnosis and initiation of therapy. Treatment-related impairment of cardiac contractility can be reversible or irreversible. In addition, the treatment of cancer is well associated with life-threatening arrhythmia, infarction, ischemia, and damage to the conduction system and cardiac valves. Knowledge of these processes has gained importance to give us an idea about strategies to prevent and monitor cardiovascular damage [3].

The principle for the study of how cancer and/or its treatment could affect the heart resulting from the observations that anthracyclines caused progressive heart failure which is dose-dependent and may cause cardiac death [3,4].

Antitumor anthracyclines such as doxorubicin (Dox), idarubicin, daunorubicin, and epirubicin are broadly used to treat hematologic malignancies and solid tumors; on the other hand, the clinical apply of anthracyclines is very limited due to their severe cardiotoxicity, which correlates with the cumulative administered dose [5,6]. It has been found that Dox stimulates free radicals that cause cell damage through entering into cardiomyocytes by passive diffusion. In addition, Dox inhibits gene transcription, mitochondrial function, and energy production by direct or indirect mechanisms [7,8].

Cardiotoxicity is responsible for free radicals production, enzymatic and non-enzymatic pathways, and redox-related damage caused by iron accumulation. In addition, it has been suggested that negative disturbance of the balance between antioxidant systems and free radicals is the main factor of cardiotoxicity [9].

In this respect, two pathways proposed for free radical generation by Dox [10]; the first mechanism is that Dox accepts an electron generated in the reaction catalyzed by flavoprotein enzymes and is converted to a reactive semiquinone form, which then spontaneously reacts with molecular oxygen producing a superoxide anion. The second mechanism is the non-enzymatic formation of a Dox-Fe²⁺ free radical complex, which then reacts with hydrogen peroxide (H₂O₂) resulting in hydroxyl radicals formation. These reactive oxygen species (ROS) react with proteins, nucleic acids, lipids, and other cellular constituents causing diverse oxidative damage to the cell membrane and mitochondria in heart muscle cells [11-13].

Date palm tree (*Phoenix dactylifera*) is well thought out as one of the main ancient and staple crops in North Africa and Southwest Asia. Moreover, dates grown in Southern Africa, Australia, South America, Mexico, and the United States, especially in Southern California, Texas, and Arizona [14,15].

Date palm fruit has been reported to be a good source of high nutritional value food. In fact, it is rich in carbohydrates, proteins, dietary fibers, minerals, and vitamin B complex, such as thiamine (B1), riboflavin...
(B2), niacin (B3), pantothenic (B5), pyridoxine (B6), and folate (B9) [16]. Besides, it regarded as a good source of antioxidant vitamins A, C, and E. The anthocyanins, isoquercetin, quercetin, quercitrin, procyanidins, apigenin, luteolin, and rutin constitute the flavonoid content of date palm fruit [17].

Numerous studies that have been conducted in the past four decades proposed that date palm fruits have varied medical apply such as anti-inflammatory, antithperlipidemic, anticancer, gastroprotective, hepatoprotective, and nephroprotective activities and thus serving as a vital healthy food in the human diet [18].

In accordance with the aforementioned medicinal properties of date palm fruit, the present research has been designed to investigate the protective potential of date palm fruit extract against cardio toxic effect of Dox drug.

MATERIALS AND METHODS

Chemicals

Oncodoox - 50 mg vial (Doxorubicin hydrochloride USP, Mfd. by CIPLA LTD., INDIA) was purchased from local pharmacy. 8-hydroxyguanosine standard (high-performance liquid chromatography [HPLC] grade) was purchased from Sigma-Aldrich Company, ST. Louis, MO, USA.

Plants

Date fruits (*P. dactylifera* L. Palmae) Zaghlool were purchased from local market, Egypt.

Experimental animals

Female albino rats (Laboratory Animal Colony, National Research Centre, Cairo, Egypt) weighing 120–140 g were used in this study. Animals were housed in stainless steel community cages at 25±2°C, 12 h light/dark cycle and allowed to acclimatize for 7 days before experimental use. Throughout the experiment, the rats were allowed free access feed (rats dietary pellets prepared by Cairo Company of Oil and Soap, Egypt) and water. The experiment was carried out in accordance with the Research Ethics Committee for Animal Subject Research at National Hepatology & Tropical Medicine Research Institute (NHTMRI – IRB) Cairo, Egypt.(serial:10-2018).

Plant extraction

About 500 g of edible portion of date fruits have been cut into small pieces and extracted with 1 L of aqueous methanol (70%) by soaking for about 4 days at room temperature. The alcoholic extract was concentrated under reduced pressure using rotaevaporator (Heidolph, Hei-VAP series, GmbH and Co. KG in Schwabach, Germany). The used extracts were dried with 0.45 μm filter. 20 µl from each sample was injected onto HPLC.

Induction of cardiotoxicity

Dox was dissolved in 0.9% saline immediately before use, protected from light and given intraperitoneally (LP) at a dose of 15 mg/kg b.w. before 48 h of blood sampling according to Chabner et al. [20].

Experimental design

A total of 40 female albino rats were used and divided into four groups (10 rats in each group) as follows:

Group I (control group): Healthy rats served as control group and received a vehicle.

Group II (date group): Healthy rats received date palm fruit extract (4 ml/kg b.w./day orally) for 30 days [19].

Group III (Dox group): Healthy rats received a vehicle and then received a single dose of Dox (15 mg/kg b.w., i.p.) at the end of experimental period [20].

Group IV (treated group): Healthy rats received date palm fruit extract (4 ml/kg b.w./day orally) for 30 days and then received a single dose of Dox (15 mg/kg b.w., i.p.).

At the end of the experimental period (30 days), animals were kept in metabolic individual cages for collection of 24 h urine samples for estimation of urinary 8-hydroxyguanosine.

Blood sampling

After the experimental period, rats were anesthetized using diethyl ether by inhalation then fasting blood samples were withdrawn from the retro-orbital venous plexus of the eye using capillary tubes, according to the method of Madway et al. [21]. Blood samples were collected in dry tube, left to clot, and serum was separated by centrifugation at 3000 rpm using cooling centrifuge (Laborzentriuge, 2K15, Sigma, Germany) for 15 min; samples were divided into aliquots and stored at −20°C for biochemical assays.

After blood samples were obtained, rats were decapitated, and heart tissues were separated and prepared for histopathological examination by routine light microscopic methods.

Preparation of tissue homogenate

Heart tissues were cut into small pieces and homogenized in 5 ml cold buffer (0.5 g of Na2HPO4 and 0.7 g of NaH2PO4 per 500 ml deionized water [pH 7.4]) per g tissue, then centrifuged at 4000 rpm for 15 min at 4°C. Supernatant was then separated and used for estimation of oxidant/antioxidant parameters [22].

Biochemical assays

Biochemical markers of cardiotoxicity

Serum creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) activities were determined using automated cobas c 311 system [Roche Diagnostics, Mannheim, Germany].

Lipid profile

Serum triglycerides (TGs) were determined by glycerol-phosphate-oxidase method as described by Jacobs and Vandemark [23]. Serum total cholesterol (TC) was determined using enzymatic method of Allain et al. [24]. Serum high-density lipoprotein cholesterol (HDL-C) was determined according to the method described by Frucht et al. [25]. Dependently low-density lipoprotein cholesterol (LDL-C) was calculated by the Friedewald formula [26].

Oxidant and antioxidant profile

Cardiac glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were assayed by the method of Pagalia and Valentine [27] and Nichikimi et al. [28], respectively. Cardiac malondialdehyde (MDA) was determined according to Okawa et al. [29].

Determination of urinary 8-hydroxy-2-deoxyguanosine (8-OHdG) using HPLC

8-OHdG was estimated by HPLC system, Agilent technologies 1100 series, equipped with a quaternary pump (Quat Pump, G131A model) according to Kim et al. [30] modified by Hussein et al. [31].

Standard preparation

For stock preparation, 1 mg standard was dissolved in 1 ml ultrapure water, and several dilutions were prepared, 20 µl from serial dilutions of standard was injected onto HPLC to draw a standard curve with different concentrations.

Sample extraction

8-OHdG was extracted from 1 ml urine. The eluents were dried under N2 stream, reconstituted in 5 ml ultrapure water, and filtered by PVDF 0.45 µm filter. 20 µl from each sample was injected onto HPLC.

HPLC condition

The mobile phase was consisted of acetonitrile/methanol/phosphate buffer A (20:80) at a flow rate of 1 ml/min. The monitoring wavelength for 8-OHdG was selected at 254 nm with a retention time of 11.2 min.
buffer (25/10/965) v/v, respectively. Phosphate buffer was prepared by dissolving 8.8 g of potassium dihydrogen phosphate in 1000 ml ultrapure water and pH was adjusted at 3.0; the buffer was then filtered 2 times through sterile membrane filters (47 mm Diam, pore size 0.45 μm) before being used at a flow rate of 1 ml/min through C18 column (250 ± 6.6, particle size 5 μm) using electrochemical detector with cell potential of 600 mV.

Calculation
The concentration of urinary 8-OHdG was calculated from the standard curve and divided on the urinary creatinine. Urinary creatinine was estimated by kinetic method as described by Larsen [32].

Histopathological examination of heart
Heart tissue was obtained from all experimental groups, washed immediately with saline and then fixed in 10% buffered neutral formalin solution. After fixation, the heart tissue processed by embedding in paraffin. Then, the heart tissue sectioned and stained with hematoxylin and eosin and examined under high power microscope (100 x) [33].

Statistical analysis
All results were expressed as mean ± standard error; data were analyzed by one-way analysis of variance [34] by means of SPSS statistical software (version 17) followed by LSD test to compare significance between groups. Difference was considered statistically significant when p≤0.05.

RESULTS AND DISCUSSION
Dox, a member of anthracycline antibiotic class, is recognized as one of the most effective and widely used chemotherapeutic therapy for the treatment of a wide range of human cancers. However, clinical use of Dox is severely limited due to its significant cardiotoxic effects, which frequently result in the development of irreversible degenerative cardiomyopathy and ultimately heart failure [35,36].

Although numerous mechanisms have been proposed, most studies supported the increase in oxidative stress, along with reductions in the levels of antioxidants, which play a key role in the pathogenesis of Dox-induced cardiomyopathy. Consequently, the addition of natural antioxidants to anticancer therapy may guard against the oxidative stress induced by Dox and other cytotoxic drugs [37]. Fruits and vegetables have been associated with decreased risks of several chronic diseases, involving oxidative stress and inflammation [38].

Date palm is one of the ancient trees cultivated from 6000 years. The different parts of date palm fruit are commonly used in traditional medicine to treat various disorders [18,39]. It has been demonstrated by several phytochemical studies that date palm fruits contain anthocyanins, sterols, carotenoids, phenolics, and proanthocyanidins compounds which contribute to the numerous biological effects of date palm fruit as free radical scavenging, antioxidant, antimicrobial, antimitogenic, and immunostimulant activities [18,40].

The present work has been planned to explore the ability of date palm fruit extract in protection against cardiotoxicity induced by Dox in rats. Cardiotoxicity induced by Dox is due to destruction of myocardial cells. This can lead to leakage of CK-MB and LDH into the circulation and serve as the diagnostic markers of myocardial injury. Therefore, the alteration in plasma membrane integrity and/or permeability is reflected by amount of these cellular enzymes in the bloodstream [41,42].

In this study, we observed that Dox treatment resulted in significant increase in both serum cardiac enzymes LDH and CK-MB activities. These results are in agreement with those reported by Argun et al. [8] and Quanlan et al. [43]. Whereas, the treatment by date palm fruit extract significantly decreases the mean values of serum CK-MB and LDH in compared to Dox group indicating its strong cardioprotective efficacy against Dox toxicity (Table 1).

El Arem et al. [44] reported that administration of date palm fruit extract restored the hepatic damage stimulated by trichloroacetic acid as confirmed by amelioration of LDH activity. Findings of the research by Abdalla et al. [40] reveal that treatment with dietary dates significantly reduced the increased activities of CK-MB and LDH. In a study performed by Daoud et al. [45], to evaluate the protective effect of date palm pollen (DPP) ethanolic extract on isoproterenol-induced myocardial infarction, pre-co-treatment with DPP extract enhanced the cardiac biomarkers injury, creatine phosphokinase, alanine aminotransferase, LDH, and troponin-T.

Administration of Dox to rats significantly increases the levels of serum TC, TG, and LDL-C but significantly decreases serum level of HDL-C compared to control (Table 2). These results were coincided with Dhana et al. [46] and Mansouri et al. [47]. These variations in the profile of lipid show that there is a possible interference of Dox with metabolism or biosynthesis of lipids [48,49]. Dox administration may lower the level of cytochrome P 450 which then depresses activity of cholesterol 7-hydroxylase, the enzyme responsible for the conversion of cholesterol to bile acids [50].

The results revealed that consumption of date palm fruit exerts a lipid-lowering effect by inducing a significant decrease in serum levels of TG and LDL-C but insignificantly decrease serum level of TG. Even as there was insignificant increase in serum HDL-C compared to Dox group (Table 2).

These findings were in agreement with previous studies of Alsaif et al. [51] and Hasan et al. [52] who reported that the supplementation with date palm fruit reduced the concentrations of TC, TG, and LDL-C while caused elevation in levels of HDL-C in hypercholesterolemic hamsters and rabbit, respectively. In addition, date palm fruit extract treatment improved the changes in lipid profile in mice infected with *Eimeria papillata* [53].

Dox and other antitumor anthracyclines have a tetracyclic quinone-hydroquinone moiety, an aminosugar (daunosamine) and a short side chain with a carbonyl group. The quinone moiety is converted into a semiquinone radical by reduction of one electron. The parent quinone is then rapidly regenerated by reduction of molecular oxygen to superoxide anion and then dismutation of the latter produce H2O2. Therefore, the persistent redox cycling of the quinone moiety exposes

Table 1: CK-MB and LDH in different studied groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>CK-MB (U/l)</th>
<th>LDH (U/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Mean±SE</td>
<td>568±39.0</td>
</tr>
<tr>
<td>Date</td>
<td>Mean±SE</td>
<td>505±23.4 a</td>
</tr>
<tr>
<td>% change a</td>
<td>−11.1%</td>
<td>−2.3 %</td>
</tr>
<tr>
<td>% change b</td>
<td>−34.3%</td>
<td>−20.1 %</td>
</tr>
<tr>
<td>Dox</td>
<td>Mean±SE</td>
<td>769±42.7 a</td>
</tr>
<tr>
<td>% change a</td>
<td>35.3 %</td>
<td>−1.8 %</td>
</tr>
<tr>
<td>% change b</td>
<td>15.6%</td>
<td>−12.3 %</td>
</tr>
<tr>
<td>Treated</td>
<td>Mean±SE</td>
<td>657±47 b</td>
</tr>
<tr>
<td>% change a</td>
<td>14.5%</td>
<td>−27.3 %</td>
</tr>
</tbody>
</table>

Results are expressed as mean±SE, n=10. *Significant difference at P≤0.05 as compared to control group. aSignificant difference at P≤0.05 as compared to Dox group. % change a: % of change from control group. % change b: % of change from Dox group. CK-MB: Creatine kinase-MB; LDH: Lactate dehydrogenase; Dox: Doxorubicin; SE: Standard error
cardiomyocytes to ROS that, in concert with iron, may lead to oxidative stress [6].

ROS can receive electrons from the lipids in cell membranes, resulting in lipid peroxidation which contributes to oxidant-induced cell death. MDA, a major and constant final product of peroxidation, is known as a commonly marker of lipid peroxidation [54]. Besides, ROS can cause structural and functional damage of mitochondria, which may result in cardiomyocytes apoptosis or death [55].

Cells have evolved different antioxidants to neutralize ROS which can suppress lipid peroxidation; so they are extremely vital for inhibiting oxidative stress-induced cytotoxicity. Antioxidant enzymes such as SOD, GPx, and catalase are capable of inhibiting the oxidation so that they are the major intracellular antioxidant defenses system. Consequently, overexpression of antioxidant enzymes can provide protective effects against the cardiomyocytes damage induced by ROS [56].

The reduction in myocardial antioxidant enzyme (SOD and GPx) activities in Dox group has been observed in this study. In addition, cardiotoxicity was further confirmed by increase in the cardiac MDA concentrations compared to the control group (Table 3). These results are consistent with the previous study reported by Chen et al. [57]. While date palm fruit extract, administration restored the cardiotoxicity induced by Dox as showed by amelioration of cardiac SOD, GPx activities, and cardiac MDA level.

These results were in agreement with Saafi et al. [58] who studied the hepatoprotective effect of date palm fruit extract on dimethoate-induced oxidative stress, and also with El-Gazzar et al. [59] who reported that pretreatment with Siwa date palm fruit extract ameliorated the elevation in hepatic MDA level induced by carbon tetrachloride (CCL4). In addition, activity of SOD increased toward the normal value by administration of hydromethanolic extract of date palm fruit in CCL4-intoxicated rats [60].

Feeding animals with dietary date palm fruit have been found to decrease the level of cardiac MDA and induce an enhancement in cardiac SOD and glutathione activities in a study by Abdalla et al. [40] planned to assess cardiac remodeling by dietary dates in Dox-intoxicated rats. Under normal conditions, the free radicals attack nuclear and mitochondrial deoxyribonucleic acid (DNA), causing mutagenic DNA lesions; one of these lesions is 8-OHdG, which is the end product of guanine hydroxylation. The DNA lesions are, hence, removed by the base excision repair (BER) pathway, which prevents DNA lesions replication. However, ROS can inhibit BER which may potentiate mutagenesis and DNA damage [61,62].

Increased levels of 8-OHdG, an indicator of oxidative DNA damage, have been indicated in a variety of pathophysiological processes such as aging, carcinogenesis, degenerative and cardiovascular diseases [63,64], liver injury [65], and diabetes [31]. It has been reported that Dox able to generate 8-OHdG in human promyelocytic leukemia cells and MCF-7 breast cancer cells [66,67].

Table 2: Lipid profile in different studied groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>Total cholesterol (mg/dl)</th>
<th>Triglycerides (mg/dl)</th>
<th>HDL (mg/dl)</th>
<th>LDL (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>85±2.27</td>
<td>71.3±2.63</td>
<td>38.8±0.85</td>
<td>31.5±2.7</td>
</tr>
<tr>
<td>Date</td>
<td>Mean±SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% change</td>
<td>5.4%</td>
<td>−8.2%</td>
<td>13.44%</td>
<td>−8.2%</td>
</tr>
<tr>
<td>% change</td>
<td>−18%</td>
<td>−3.2%</td>
<td>−47.5%</td>
<td>−46%</td>
</tr>
<tr>
<td>Dox</td>
<td>Mean±SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% change</td>
<td>30%</td>
<td>30.8%</td>
<td>−16.2%</td>
<td>99.3%</td>
</tr>
<tr>
<td>% change</td>
<td>17%</td>
<td>19.9%</td>
<td>−6.7%</td>
<td>41.9%</td>
</tr>
<tr>
<td>% change</td>
<td>−10%</td>
<td>−8.36%</td>
<td>11.4%</td>
<td>−28.8%</td>
</tr>
</tbody>
</table>

Table 3: Oxidant/antioxidant parameters in different studied groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>GPx (U/g tissue)</th>
<th>SOD (U/g tissue)</th>
<th>MDA (nmol/g tissue)</th>
<th>8-OHdG (ng/mg creatinine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>4.2±0.5</td>
<td>303.3±5.4</td>
<td>30.8±7.5</td>
<td>5.1±0.17</td>
</tr>
<tr>
<td>Date</td>
<td>Mean±SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% change</td>
<td>11.9%</td>
<td>4.09%</td>
<td>−31.5%</td>
<td>4.9±0.12</td>
</tr>
<tr>
<td>% change</td>
<td>90%</td>
<td>13.44%</td>
<td>−47.5%</td>
<td>−2.7%</td>
</tr>
<tr>
<td>Dox</td>
<td>Mean±SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% change</td>
<td>−41.2%</td>
<td>−8.2%</td>
<td>30.5%</td>
<td>80.4%</td>
</tr>
<tr>
<td>% change</td>
<td>3.6±0.5</td>
<td>299.17±6.6%</td>
<td>32.0±3.5</td>
<td>6.1±0.12</td>
</tr>
<tr>
<td>% change</td>
<td>−14.3%</td>
<td>−1.36%</td>
<td>3.9%</td>
<td>19.6%</td>
</tr>
<tr>
<td>% change</td>
<td>45.7%</td>
<td>7.5%</td>
<td>−20.4%</td>
<td>−33.7%</td>
</tr>
</tbody>
</table>

Results are expressed as mean±SE, n=10. "% change from control group. % change: % of change from control group. % change: % of change from Dox group. Dox: Doxorubicin, SE: Standard error, HDL: High-density lipoprotein, LDL: Low-density lipoprotein, MDA: Malondialdehyde, 8-OHdG: 8-hydroxy-2-deoxyguanosine.
Phoenix dactylifera
Ranolazine protects from doxorubicin-induced oxidative stress

It has been observed in the present investigation that administration of Dox to rats significantly increase levels of urinary 8-OHdG. While pre-treatment with date palm fruit extract has been shown to significantly decrease levels of urinary 8-OHdG.

Histological examination of sections from control group illustrated normal characteristic features of myocardium with no cellular infiltration and normal vasculature. Myocardium is striated with branching, and the nucleus is located centrally. Occasionally, myocardium is binucleated. Intercalated discs between cardiac cells are seen (Fig. 1a). Normal myocardial features similar to that of normal control group were shown in date palm fruit group (Fig. 1b).

In this investigation, typical histopathological alterations such as interstitial edema between irregular wavy-directed cardiomyocytes, vascular dilatation and congestion, mild inflammatory cellular infiltration and fibrosis and myofibrolysis have been observed following Dox administration (Fig. 1c). This coincided with the work of the previous studies [68-69].

Quanjun et al. [43] found that Dox treatment resulted in chronic focal inflammatory pathology in the myocardium. This inflammatory infiltrate reflects the replacement of degenerated myocardial muscle fibers with plasma cells and lymphocytes.

In contrast, microscopic examination of sections from the heart of date palm fruit extract treated rats showed myocardial that appeared more or less like normal one (Fig. 1d). The histopathological examinations of a study by Abdalla et al. [40] showed that the distorted architecture of the cardiomyocytes induced by Dox has been restored by feeding animals with the dietary date palm fruits.

CONCLUSION

Date palm fruit extract administration protects against Dox-induced myocardial toxicity by reducing cardiac injury markers, reestablishment of oxidant/antioxidant parameters, ameliorating lipid profile, and lessening the histopathological changes. These effects may be due to its high contents of flavonoid (anthocyanins, apigenin, isoquercetin, quercetin, quercitrin, procyanidins, luteolin, and rutin) and its lipid lowering effects.

ACKNOWLEDGMENTS

The authors are thankful to the National Research Centre (NRC) for unlimited help and support to carry out this work.

CONFLICTS OF INTEREST

The present study was performed in the absence of any conflicts of interest.

REFERENCES