INTRODUCTION

Antioxidants

Antioxidants are the compounds that stop or reduce the oxidation of other compounds. A typical definition of oxidation is the amalgamation of any compound or constituent with that of oxygen. For this reason, the term oxidation comes. It originates from the French word oxi
d, coined by Guyton de Morveau and Antoine Lavoisier in 1787 from the words oxygen and acide. These two words, i.e., oxygen and acide were united to form the single word oxide. The processes such as oxidation and reduction that is gain of oxygen and loss of oxygen, respectively, take place concurrently, and therefore, the reaction is said to be redox reaction. The term oxide has various meanings on the basis of different scientific areas [1].

Antioxidants are naturally found in foods but in very low concentrations. Hence, to control the oxidation, supplementary amount is added to recover the whole quality and to increase life period by a mechanism known as free radical termination [2]. In human body, various processes involving biochemical and physiological activities generate by-products in the form of oxygen-centered free radicals and reactive oxygen species (ROS), which in higher amounts results in the oxidative harm to biomolecules such as carbohydrates, proteins, lipids, and DNA. Ultimately, many chronic diseases may arise [3]. Antioxidants also give protection from harm originated by abandoned ROS production and associated lipid peroxidation (LPO), breakage of deoxyribonucleic acid strand, and protein damage [4]. At physiologically virtual levels, a perfect antioxidant has to be freely absorbed, chelate metal redox and quench free radicals [5].

Free radicals are associated with the development of a number of chaos in human bodies such as cell death, tissue damage, atherosclerosis, arthritis, cancer, injury of central nervous system, cardiovascular diseases, obesity, and ischemic heart diseases. To get rid of such diseases of free radicals, antioxidants are needed which can protect the individual life [6]. Shortage of antioxidants, which are able to reduce or quench the free radicals, supports the progression of degenerative diseases, such as neurodegenerative diseases, for example, Alzheimer’s disease, cardiovascular diseases, for example, cancers, and inflammatory diseases [7].

Antioxidants played a significant role in health defensive mechanisms. Methodical indication recommends that antioxidants diminish the risk for chronic diseases such as cancer and heart diseases. The whole grains, fruits, and vegetables are the major sources of naturally producing antioxidants. The antioxidants such as phenolic acids, carotenes, Vitamin C, and Vitamin E obtained from plants have been documented to have the capability to decrease the risk of diseases [8]. Synthetic antioxidants such as butylated hydroxyanisole (BHT), BHT, tert-butylhydroquinone (TBHQ), and propyl gallate (PG) from food were used extensively. Chelators are also used widely because of the pro-oxidant consequences of transition metal ions including copper, magnesium, and iron in the food-producing industries. Concerning the well-being of certain man-made antioxidants as latent carcinogens, there has been sturdy concern and debate for many years. These synthetic antioxidants were still stay on the list of generally recognized as safe, but drawbacks of their use have been employed in United States, whereas BHT, TBHQ, and PG at a standstill require sanction in various states. Consequently, there is emergent significance by food industry and the users in replacing these man-made antioxidants with alternatives of naturally produced substances that have been supposed to be harmless and have extensive purchaser acceptance [2], and the curiosity to utilize natural antioxidants has been increased worldwide.

Plants have been regarded as the primary source of secondary metabolites showing fascinating biological actions. Normally, these chemical constituents are the chief sources of a number of structural preparations and properties [9]. Well-known examples of these secondary metabolites involve phenols, flavonoids, phenolic glycosides, cyanogenic glycosides, and saponins [10].

Worldwide, the recent scientific studies revealed the medicinal properties of plants, which have been examined, because of their effective pharmacological activities, economic viability, and their low toxicity [11]. For many years, natural products particularly plants are being utilized for the curing of a number of diseases. From pre-historic times, terrestrial plants were used in India, China, Greece, and Egypt and a remarkable number of fresh medicines were isolated from them. The uses of medicinal plants in written records have been reported.
from the Sumerians and Alkaidians in about 2600 BC [12]. According to the World Health Organization, it has been estimated that 80% of the world’s population depend on folklore medicine for their chief health-care necessities and this remedy mostly involves the extracts from plants and the bioactive constituents present in them [13].

There is growing tendency in comparing the phytochemicals obtained from medicinal plants and their pharmacological actions. Recently, it has been reported that the natural antioxidants from therapeutic plants defend from lethal and detrimental consequences of free radicals. The antioxidants have broad range of pharmacological activities such as anti-inflammatory, antimutagenic, antimicrobial, anticarcinogenic, and free radical antioxidant scavenging activity [5,14].

SOME ASSAY METHODS USED TO ESTIMATE ANTIOXIDANT CONTENT PRESENT IN NATURAL PRODUCTS

Antioxidants, such as phenolic compounds (phenolic acids, flavonoids, and tannins), showed wide range of biological properties, including anticarcinogenic, anti-inflammatory, and anti-atherosclerotic effects, because of their antioxidant activity [15]. Although numerous assays are available to find out the antioxidant activity. Some reported methods include 1,1-diphenyl-2-picrylhydrazine (DPPH) radical scavenging assay, 1,1-diphenyl-2-picrylhydrazine (DPPH) radical scavenging activity [16], ferric reducing antioxidant power assay [17], oxygen radical absorbance capacity assay [18], total radical trapping antioxidant potential assay [19]. LPO method [20], superoxide anion scavenging activity [21,2,2',2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging method [22,23], hydroxyl radical scavenging activity [24,25], reducing power assay [26], thiobarbituric acid method [27], and Folin–Ciocalteu (FTC) method [28].

Among all the methods available to evaluate antioxidant activity, DPPH and ABTS methods are found to be most common and consistent, and in recent years, these methods have been modified and processed for improvement. Some of the methods are briefly described as under.

DPPH method

The method DPPH free radical scavenging assay was first illustrated in 1958 by Blois, and later on, it was modified to some extent by various researchers. For plant samples, it is one of the most comprehensively used assays to measure antioxidant ability of natural products. This method depends on the scavenging ability of DPPH through adding up an antioxidant or radical species into the DPPH solution, resulted in the decolorization of that solution. It is most stable free radical scavenger that reacts with substances and can provide a hydrogen atom. Then, the antioxidant activity is calculated by reducing in absorption at 515 nm. This method has been done by preparing the DPPH (0.1 mM) solution in methanol, and then, the prepared solution of 4 ml is supplemented to 1 ml of the sample solution in methanol changing concentrations. The absorbance of the mixture is then calculated at 517 nm after 30 min. The absorbance of the mixture decreased on large scale suggests considerable free radical trapping ability of the compound [7].

ABTS radical scavenging method

This method was first developed in 1994 by Rice-Evans and Miller; later on, it was modified in 1999 by Re et al. This modification is based on Metmyoglobin activation by adding hydrogen peroxide and ABTS to generate a radical cation. Through the reaction of ABTS and potassium persulfate, this improved process produces a blue-green ABTS chromophore and is now extensively used. The ABTS radical scavenging method besides DPPH method is one of the comprehensively used antioxidant methods for plant products. The reduction of ABTS to ABTS radical cation in the presence of potassium persulfate is measured at 734 nm spectrophotometrically. This method is used for the calculation of total antioxidant activity of hydrophilic as well as lipophilic substances. The antioxidant concentration effect and duration of radical cation inhibition should be kept in mind at the time of determination of antioxidant activity of the sample. Trolox, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, an analog of the Vitamin E is a water soluble applied as a positive entity, and the antioxidant activity is communicated in terms of trolox-equivalent antioxidant capacity/mg of the extract [7].

Reducing power assay

The antioxidant activity of the plant extracts is resolved by the method known as reducing power method [26]. In this method, the extract in 1 ml of methanol is mingled with 5 ml of phosphate buffer (0.2 M) at pH 6.6 and 5 ml of 1% potassium ferricyanide and then incubated the mixture for 20 min at 50°C. After that 5 ml of 10% trichloroacetic acid was added and centrifuged the reaction mixture for 10 min. at 3000 rpm. Then, 5 ml of the solution from the upper layer is mixed with 1 ml of 1% ferric chloride and 5 ml distilled water, and at 700 nm, absorbance is calculated. A powerful absorbance signifies the amplified reducing power.

FTC method

The total phenolic content of the plant sample is determined by the FTC reagent assay [28] in a simple and inexpensive way. Although without any methodical optimization or justification, several modifications were made since from years. In this method, 0.2 ml of the plant sample is intermingled with diluted 0.5 ml of FTC reagent. Before the addition of 0.2 ml of saturated solution of sodium carbonate, the mixture is kept at 25°C for 3 min. The reaction mixture is then allowed to stand for another 120 min and the absorbance of the mixture is measured at 727 nm. Calibration curve is obtained by the use of standard, i.e., gallic acid. The total phenolic amount of the sample is expressed in terms of gallic acid equivalents in mg/1 of sample.

SOME MEDICINAL PLANTS WITH ANTIOXIDANT PROPERTIES

Since ancient times, utilization of medicinal plant and their products has improved due to their exerted advantageous properties such as antioxidant, hypolipidemic, hypoglycemic, and anticancer activities. Some of the plants with potent antioxidant activities are discussed below:

Zingiber officinalis

Ginger (Z. officinale L.) belonging to the family Zingiberaceae is a perennial herb and has been utilized as a spice for more than 2000 years [29]. In numerous parts of the world, it is not only one of the commonly used species to increase the flavor and taste of the food but also a variety of prospective bioactive compounds is also found with effective pharmaceutical and biological properties. Mostly rhizomes of the ginger are used as a condiment and spice [30,31]. Ginger consumption has been reported to be fruitful in various stress-associated health circumstances, and among such problems, some of them include tumor progression [32], hypertension [33], diabetes-provoked renal, and pancreatic ailments [34]. In conventional system of medicine, it has been used against headaches, colds, nausea, arthritis, and muscular and rheumatic chaos [35]. In addition, it has also been proposed that bioactive compounds from ginger showed various properties including renoprotective [36], anticancer, anti-inflammatory [37], and antioxidant effects [38] are actually antioxidants.

In mammalian system, the antioxidant activity of the compounds from this spice involves only single or more than one process from, free radical scavenging activity, improving the antioxidant molecules in tissues, LPO suppression, reducing the inducible nitric oxide synthase activity, rousing the actions of endogenous antioxidant enzymes, hindering the oxidation of low-density lipoprotein (LDL), and reduction of the enzymes such as 2-cyclooxygenase enzymes and 5-lipoxygenase for metabolism of arachidonic acid [39].

The astringent compounds of ginger such as 6-paradol and 6-gingerol acquire anti-inflammatory and antioxidative properties. The antioxidant activity has been studied by in vitro due to the presence of total phenols in the extracts of ginger. The antioxidant effect of total phenols of ginger in which DPPH free radical scavenging surpassed to that of BHT and half maximal inhibitory concentration
(IC50) values for DPPH inhibition was 0.64/μg/mL. The extract from ginger reduced the hydroxyl radicals to an amount greater than that of quercetin which is a potent antioxidant compound. 6-gingerol has chemoprotective and chemopreventive actions which are frequently related to that of anti-inflammatory and antioxidant properties, and it is a scavenger of peroxyl free radicals. Phospholipid liposomes peroxidation decreased due to gingerol in the presence of ascorbic acid and iron ions (Fe3+). Nitric oxide, a reactive nitorgen species, has been concerned to manipulate transduction signal and causes damage to DNA resulting in cancer development, but 6-gingerol is proved to be a strong inhibitor of synthesis of NO and is also a valuable defender against damage in lipopolysaccharide activated macrophages mediated by peroxynitrite [40-43].

Adiantum capillus-veneris

A. capillus-veneris also known as southern maidenhair fern belonging to the family Adiantaceae is one of the most important species and has been reported to have potential significance for nutritive and medicinal purposes. It has reported a number of bioactive compounds including carbohydrates, flavonoids, carotenoids, triterpenoids, aldehydes, and aloeananes. Due to the presence of these chemical constituents, this plant exerted various pharmacological activities such as anti-inflammatory, anti-proliferative, analgesic, antimicrobial, neuroprotective, antioxidant, and many more [52].

It has been reported that the ethanol extract of A. capillus veneris showed excellent antioxidant activity in comparison to ascorbic acid used as a standard. It shows low IC50 values for DPPH assay and ABTS assay 0.3996 mg/gm and 0.9605 mg/gm, respectively. The outcomes achieved signified that leaves of A. capillus veneris were endowed with free radical scavenging compounds and can be used as a prospective source of nutrients and natural antioxidants [53].

Another study on A. capillus veneris revealed that the flavonoids extracted from this plant showed antioxidant activity both **in vitro** and **in vivo** methods. When compared with synthetic antioxidants such as ethylenediaminetetraacetic acid, BHT, and ascorbic acid, the flavonoids of adiantum were estimated in scavenging abilities of superoxide anion, 1, 1-diphenyl 2-picryl-hydrazyl (DPPH) free radical, chelating potential of ferrous ion, and reducing power **in vitro**. The results showed approximate or significant antioxidant activity of flavonoids of adiantum in appropriate concentrations than that of synthetic antioxidants. **In vivo** activity of flavonoids of adiantum were also examined through acute mice liver injury experiment. In mice, the liver under the influence of CCl4 demonstrated a major decrease in superoxide dismutase (SOD), glutathione (GSH), and catalase levels, but at the same time, considerable enhancement occurs in malondialdehyde (MDA) levels. Compared with the Group II that received only CCl4, the group that received Vitamin E and higher dose of flavonoids of adiantum showed considerable increase in SOD, GSH, and SOD activity, but simultaneously decreased the MDA activity. The whole process takes place in a dose-dependent manner, and the results obtained showed that the flavonoids of adiantum possesses strong antioxidant activities [54].

Stevia rebaudiana

S. rebaudiana (Bert.), commonly known as candy leaf, sweet leaf, or sugar leaf belonging to the family Asteraceae, is a wild perennial herbaceous plant grows in sandy soil and is native to Paraguay [55]. Steviolide is the chief sweet compound extracted from the S. rebaudiana leaves [56]. Its sweetener components have been advocated to possess advantageous consequences on human health in such a way that they show antihuman rotavirus activities, glucose metabolism, anti-hyperglycemic noncarciogenic [57], antihypertensive [58], and antioxidant properties [59]. In rats, the aqueous extracts of dried leaves of this plant provoke systemic and renal vasodilation results in natriuresis, diuresis, and hypotension in rats [60].

The antioxidant activity of dried leaves of S. rebaudiana extract has been studied by measuring DPPH radical scavenging essay, using in different concentrations in increasing order, i.e., 20, 40, 50, 100, and 200 μg/ml in a dose-dependent way, and it ranges from 40.00 to 72.37%, in which it is 64.26–82.58% at 50 μg/ml in erythrocytes. These extracts also take part in reducing the LPO, with values ranging between 19 and 71%, in the concentration of 500 μg/mL, but not showing any effect toward the XO at 50 μg/ml. In all the essays of antioxidant activity, methanol extract was the most effective [51].

Momordica charantia

M. charantia L. (bitter guard) is from the family Cucurbitaceae has been used in food and medicine from prehistoric times. M. charantia is also known by other names such as karela and balsam pear, and Mara in Thai. It grows in Africa, USA, Malaysia, Indian tropical and subtropical parts, the Middle East, and Thailand [44]. Many advantageous bioactive compounds have been isolated from this nutrient-rich plant, which showed numerous effects of medicinal and physiological activities such as antihypertensive, antioxidant, and antitumor [45,46]. In addition to this, it has strong anti-cholesterol, hypoglycemic, and antioxidant properties [47]. In one of the studies, the two extracts of M. charantia, using water and ethanol solvents, showed that both these extracts, i.e., water extract as well as ethanol extract possess strong DPPH radical scavenging activity as compared to Vitamin E, used as standard. The IC50 is 0.4% for water extract, ethanol extract, and Vitamin E were 129.94 mg/ml, 156.78 mg/ml, and possess potential 172.21 mg/ml, respectively. In addition, these two extracts of bitter guard showed a superior iron chelating activity in comparison to Vitamin E. In water extract of M. charantia, there is higher amount (52.0 μg/g) of total flavonoid content than ethanol extract (44.0 μg/g), and lesser total phenol content is found in water extract (51.6 μg/g) than ethanol extract (68.8 μg/g), but both these extracts of M. charantia possessed a strong antioxidant and free radical scavenging properties [48].
values which is 26.75 μg/ml for ascorbic acid in DPPH assay. The total phenolic content of this extract is measured by using FTC reagent which contained phenolic content in the concentration of 56.73 mg/g and is found to be extensively effective when compared to gallic acid which is used as reference standard. This extract reduced superoxide anions, hydroxyl radical, and nitric oxide as well with IC50 values 100.86, 0.88 mg/g, and 6.88 mg/g, respectively, and the values for such parameters of hydroalcoholic extracts were 7.44 mg/g, 9.35 mg/g, 0.88 mg/g, 6.88 mg/g, and 5.36 mg/g, respectively [63].

The antioxidant activity of D. fastuosa was evaluated from the methanolic and hydroalcoholic seed extracts by measuring the total antioxidant capacity and total flavonoid, phenolic, proanthocyanidines, and flavonol contents. The IC50 was 28.34 μg/ml and 25.78 μg/ml of the methanolic and hydroalcoholic extracts of D. fastuosa, respectively, through DPPH essay. On behalf of methanolic extract of D. fastuosa, it has been found that the entire antioxidant ability, total amount of flavonoid content, total proanthocyanidines content, total phenolic content, and total amount of flavone were 6.83 mg/g, 6.34 mg/g, 1.42 mg/g, 9.97 mg/g, and 5.37 mg/g, respectively, and the values for D. metel, which were recognized as apigenin, 4-,7-dimethoxy apigenin, 3-,6-dimethoxy apigenin, and rutin having IC50 values as 30.5±2.1 μg/ml. 37.4±3.4 μg/ml, 31.5±3.4 μg/ml and 23.7±1.9 μg/ml respectively in DPPH assay. For methanol extract, the IC50 value for DPPH essay was 20.1±1.7 μg/ml, which is same as that of a synthetic compound BHT used as antioxidant, having IC50 value as (18.3±1.9 μg/ml). The presence of affluent content of flavonoids, showing great antioxidant activity, in the extract of T. polium was used in many food substances as an alternative of synthetic antioxidants [65].

It has also been studied that the T. polium ethanol extract showed the effective antioxidant activity, same as that of α-tocopherol. Recently, the antioxidant activity was also studied on rats by in vivo method, where rats have been delighted with extracts of T. polium, which showed a considerable antioxidant activity as that of α-tocopherol (positive control) in the DPPH test. At the doses of 50 mg/kg and 100 mg/kg, the extracts of T. polium extensively amplified the total antioxidant power and reduced the thiobarbituric acid reactive substances in

Table 1: Some medicinal plants with antioxidant properties

<table>
<thead>
<tr>
<th>Plant name</th>
<th>Common name</th>
<th>Family</th>
<th>Part used</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zingiber officinale</td>
<td>Ginger</td>
<td>Zingiberaceae</td>
<td>Rhizome</td>
<td>[37]</td>
</tr>
<tr>
<td>Monordica charantia</td>
<td>Bitter gourd</td>
<td>Cucurbitaceae</td>
<td>Whole plant</td>
<td>[48]</td>
</tr>
<tr>
<td>Cymbopogon citrates</td>
<td>Lemon grass</td>
<td>Gramineae</td>
<td>Aerial part, leaves</td>
<td>[51,50]</td>
</tr>
<tr>
<td>Adiantum capillus-veneris</td>
<td>Southern maidenhair fern</td>
<td>Adiantaceae</td>
<td>Whole plant</td>
<td>[54]</td>
</tr>
<tr>
<td>Datura metel</td>
<td>Datura</td>
<td>Solanaceae</td>
<td>Leaves</td>
<td>[64]</td>
</tr>
<tr>
<td>Tecucus polium</td>
<td>Felty germander</td>
<td>Lamiaceae</td>
<td>Aerial part</td>
<td>[65]</td>
</tr>
<tr>
<td>Polyalthia cerasoides</td>
<td>Cherry ashok</td>
<td>Amaranthaceae</td>
<td>Stem bark</td>
<td>[70]</td>
</tr>
<tr>
<td>Crocus sativus</td>
<td>Saffron</td>
<td>Iridaceae</td>
<td>Sepals</td>
<td>[71]</td>
</tr>
<tr>
<td>Curcuma longa</td>
<td>Turmeric</td>
<td>Zingiberaceae</td>
<td>Rhizome</td>
<td>[72]</td>
</tr>
<tr>
<td>Azadirachta indica</td>
<td>Neem</td>
<td>Meliaceae</td>
<td>Leaf</td>
<td>[73]</td>
</tr>
<tr>
<td>Ocimum sanctum</td>
<td>Tulsia</td>
<td>Lamiaceae</td>
<td>Leaf</td>
<td>[74]</td>
</tr>
<tr>
<td>Terminalia bellirica</td>
<td>Behda</td>
<td>Combretaceae</td>
<td>Fruit</td>
<td>[75]</td>
</tr>
<tr>
<td>Solanum tuberosum</td>
<td>Potato</td>
<td>Solanaceae</td>
<td>Tubers</td>
<td>[76]</td>
</tr>
<tr>
<td>Foeniculum vulgare</td>
<td>Sauf</td>
<td>Apiaceae</td>
<td>Seed oil</td>
<td>[77]</td>
</tr>
<tr>
<td>Cuscuta reflexa</td>
<td>Akashabela</td>
<td>Convolvulaceae</td>
<td>Stem</td>
<td>[78]</td>
</tr>
<tr>
<td>Salvia officinalis</td>
<td>Common sage</td>
<td>Lamiaceae</td>
<td>Root</td>
<td>[79]</td>
</tr>
<tr>
<td>Litsea glutinosa</td>
<td>Soft bolyghm</td>
<td>Lamiaceae</td>
<td>Stem bark</td>
<td>[80]</td>
</tr>
<tr>
<td>Murraya koenigii</td>
<td>Curry tree</td>
<td>Rutaceae</td>
<td>Leaves</td>
<td>[81]</td>
</tr>
<tr>
<td>Cinnamomum tamala</td>
<td>Tejpat</td>
<td>Lauraceae</td>
<td>Leaf oil</td>
<td>[82]</td>
</tr>
<tr>
<td>Allium sativum</td>
<td>Garlic</td>
<td>Amaryllidaceae</td>
<td>Bulb</td>
<td>[83]</td>
</tr>
<tr>
<td>Allium cepa</td>
<td>Onion</td>
<td>Amaryllidaceae</td>
<td>Bulb</td>
<td>[83]</td>
</tr>
<tr>
<td>Costus puctus</td>
<td>Spiral ginger</td>
<td>Costaceae</td>
<td>Leaves</td>
<td>[84]</td>
</tr>
<tr>
<td>Bacopa monnieri</td>
<td>Brahmi</td>
<td>Scrophulariaceae</td>
<td>Leaves</td>
<td>[85]</td>
</tr>
<tr>
<td>Plantago asiatica</td>
<td>Chinese plantain</td>
<td>Plantaginaceae</td>
<td>Seed</td>
<td>[86]</td>
</tr>
<tr>
<td>Arnebia benthamii</td>
<td>Gozaban</td>
<td>Boraginacea</td>
<td>Whole plant</td>
<td>[87]</td>
</tr>
<tr>
<td>Aloe vera</td>
<td>Star cactus/Indian aloes</td>
<td>Asphodelaceae</td>
<td>Leaves</td>
<td>[88]</td>
</tr>
<tr>
<td>Dauca carota</td>
<td>Carrot</td>
<td>Aloeaceae</td>
<td>Root</td>
<td>[89]</td>
</tr>
<tr>
<td>Mentha Pulegium</td>
<td>Pavronyol</td>
<td>Lamiaceae</td>
<td>Leaves</td>
<td>[90]</td>
</tr>
<tr>
<td>Cotinus coggyria</td>
<td>Smoke tree</td>
<td>Anacardiaceae</td>
<td>Leaves</td>
<td>[91]</td>
</tr>
<tr>
<td>Tamus communis</td>
<td>Black Bryon</td>
<td>Dioscoreaceae</td>
<td>Root</td>
<td>[92]</td>
</tr>
<tr>
<td>Aegle marnelos</td>
<td>Bengal quince</td>
<td>Rutaceae</td>
<td>Fruit</td>
<td>[93]</td>
</tr>
</tbody>
</table>
rats, compared to the control [66]. In vitro studies of aqueous extract of *T. polium* can also efficiently reduce oxidative progressions with significant antioxidant activity [67].

Polyalthia cerasoides

P. cerasoides (Roxb.) commonly known as cherry ashok, belonging to the family Annonaceae, is a medium-sized evergreen tree found in about all the Deccan Indian forests at an altitude of about 3000 ft. The fruits of this plant have been used as food in tribal people of Indian states such as Andhra Pradesh and Tamil Nadu, while as African tribal people consumed the leaves, fruits, and roots of this plant, used to heal rheumatism, aphrodisiac, toothache, and deparasitant, and also used as an anti-inflammatory agent. The stem bark of *P. cerasoides* has been confirmed after various pharmacological investigations reduced the brain stress [68,69].

The antioxidant probability of alcohol extract of stem bark of *P. cerasoides* has been estimated using different essays including DPPH assay, superoxide anion scavenging assay, hydroxyl radical assay, and reducing power assay. The methanolic extract of stem bark of this plant displayed a momentous DPPH scavenging activity inhibition in a dose-dependent manner: 50% inhibition showed at 25 μg/ml concentration corresponding to tannic acid. In superoxide anion scavenging assay, the alcoholic extract acquires the efficiency of 50% inhibition at the concentration of 80 μg/ml corresponding to tannic acid indicated by the decrease in the absorbance of the plant extract at 560 nm. For hydroxyl radical, the alcoholic extract showed 50% inhibition, in the concentration of 50 μg/ml corresponding to tannic acid. This extract can also reduce the Fe3+ to Fe2+ ions. The total amount of phenolic content in the alcoholic extract of this plant was articulated as 0.589 μg of tannic acid comparable to per mg of extract. In all the *in vitro* antioxidant tests, the stem bark extract of *P. cerasoides* confirmed considerable ROS scavenging activity and restrained elevated amount of total phenolic levels [70].

CONCLUSION

Cellular harm of human body comes up from free radicals or ROS and appears a basic mechanism, involving a number of neurodegenerative chaos, digestive system disorders, inflammation, diabetes, viral infections, and autoimmune pathologies. From various laboratory experiments, it has been shown that free radicals and ROS are involved in these dreadful diseases. A variety of synthetic antioxidants are used in processed foods to defeat such ailments, but they show evidences of adverse side effects in humans. Several home-grown antioxidants may be valuable in preventing such effects of oxidative stress and have led to substantial attention in manipulating the antioxidant capability of botanicals, foods, and other nutritional antioxidant supplements. In the present study, some medicinal plants as shown in Table 1, for example, *Z. officinalis*, *M. charantia*, *C. citratus*, *A. capillus-veneris*, *D. metel*, *T. polium*, *P. cerasoides*, *C. sativus*, *C. longa*, and *A. Indica* have been proved to possess valuable antioxidant properties as they contain a large number of secondary metabolites such as flavonoids and phenolics. In addition to antioxidant activity, these compounds are also used as anticarcinogenic, anti-inflammatory, antibacterial, antiviral and antifungal, antispasmodic, and antidiabetic.

CONFLICT OF INTEREST

The authors declared that they had no conflicts of interests.

REFERENCES

52. Al-Snafi AE. Medical importance of Datura fastuosa (syn: Datura metel) and Datura stramonium - A review. IOSR J Pharm 2017;7:43-58.

