METHANOLIC FLOWER EXTRACT OF *PHLOGACANTHUS THYSIFLORUS* NEES. ATTENUATES DIABETIC NEPHROPATHY IN ALLOXAN-INDUCED DIABETIC MICE

JUTISHNA BORA, DONKUPAR SYIEM, SURYA BHAN*

Department of Biochemistry, North Eastern Hill University, Shillong – 793 022, Meghalaya, India. Email: sry_bhan@yahoo.co.in

Received: 20 February 2017, Revised and Accepted: 28 March 2018

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i7.25393

ABSTRACT

Objectives: The aim of the present study is to determine the effects of *Phlogacanthus thyrsiflorus* on hyperglycemia and oxidative stress in kidneys of diabetic mice.

Methods: Aqueous flower extract (AFE) and methanolic flower extract (MFE) were prepared. Preliminary phytochemical screenings were carried out. Diabetic mice were prepared by administering alloxan at 150 mg/kg body weight (b.w). The effects of different doses (150–550 mg/kg b.w) of the MFE on hyperglycemia were examined for short-term duration in diabetic mice. Activities of antioxidant enzymes, superoxide dismutase (CuZn-SOD and Mn-SOD), catalase (CAT), and glutathione reductase (GR) were examined under normal, diabetic, and diabetic-treated groups. Histopathological studies were also carried out for the above groups.

Results: It has been found that the flavonoids and tannins were strongly present in MFE and further *in vivo* studies with MFE were carried out. It has also been observed that 250 mg/kg b.w dose of MFE showed significant reduction of blood glucose level. The activities of SOD, CAT, and GR increased in diabetic mice treated with MFE. Histological studies showed that MFE could further halt the damage caused by oxidative stress and reduced tissue injuries in diabetic mice.

Conclusion: MFE of *P. thyrsiflorus* has positive effects in alloxan-induced diabetic mice and could be potential candidate for the detailed molecular studies and management of diabetes.

Keywords: Alloxan, Diabetes mellitus, Antihyperglycemic activity, Antioxidative activity, Metformin, Phlogacanthus thyrsiflorus.

INTRODUCTION

Diabetes mellitus (DM) is a serious global health problem with 415 million population are under its grip worldwide in 2015 and this might extend to 642 million by 2040 [1]. Diabetes, also termed as DM, is a metabolic disorder characterized by chronic hyperglycemia. Deficiency of insulin secretion, insulin action, or both could lead to metabolic disturbance of carbohydrate, fat, and protein [2]. The prolonged hyperglycemia during DM stimulates increased production of free radicals through several mechanisms such as polyol pathway, glucose oxidation, and advanced glycation end product formation [3,4]. Therefore, there are enzymic and non-enzymic antioxidant defense systems in mammalian cells that minimize the cellular damage caused by free radicals. However, the relative overload of free radicals and lowering of antioxidant defense systems activities in DM added with the generation of more oxidative stress that results in pathogenesis and complications of diabetes [5,6]. The DM is considered to be a global problem and successful treatment has yet to be discovered. Although insulin therapy and oral hypoglycemic agents are available for the treatment of diabetes and are also effective in controlling hyperglycemia, they are associated with many side effects and failed to significantly alter the course of diabetic complications. Medicinal plants and their bioactive compound are used as an alternative method to treat the diabetes patient throughout the world since the 6th century [7]. A current research on free radicals has evaluated that foods which are rich in antioxidants possess an essential role in the prevention of adverse effects caused by diabetes. Resultantly, natural antioxidants, that are ubiquitous in fruits, leaves, and flowers, have received great attention and have been studied extensively, as they are effective free radical scavengers and are presumed to be less toxic than synthetic antioxidants [8]. Literature also reports about 800 plants which may possess anti-diabetic potential [9].

Phlogacanthus thyrsiflorus is an herb from a family of Acanthaceae, which has several common names such as titaaphul, chuhai, and tangkhul. *P. thyrsiflorus* is one of the common medicinal plants used by local people of Assam to manage diabetes [10]. *P. thyrsiflorus* produces a number of secondary metabolites such as alkaloids, flavonoids, steroids, triterpenoids, polyphenols, and glycosides. It has free radical scavenging property so it may prove as a very good medicinal herb [11]. In this regard, it makes great sense to evaluate the anti-diabetic and antioxidative properties of flowers extract in alloxan-induced diabetic mice model.

METHODS

Chemicals

Alloxan, pyrogallol, and metformin were procured from Sigma-Aldrich Co. (St. Louis, MO, USA). Insulin was purchased from Gland Pharma Ltd. (Hyderabad, India). The other chemicals used were of analytical grade ordered from Merck Co. (Mumbai, India) and Sisco Research Laboratory.

Plant material

Flowers of *P. thyrsiflorus* were collected from Assam, India (voucher No: 12055). The specimen was submitted and identified by Dr. PB. Gurung Curator herbarium, Department of Botany, NEHU, Shillong, Meghalaya.

Aqueous and methanolic extracts preparation

The flowers were separated, weighed, washed, and dried in the shade. It was then grinded to powder form using a grinder. Aqueous flower extract (AFE) was prepared by macerating with distilled water (10x volumes) for 24 h at room temperature with continuous stirring. It was then filtered through Whatman paper number 1. The filtrate was transferred into lyophilized tube and freeze dried (lyophilization) for 1–2 days and stored in ~−20°C freezer for further use [12]. Similarly, methanolic flower extract (MFE) was prepared by extracting it with 10x volume of methanol:aqueous
solution (4:1). After overnight stirring (extracting), the mixture was filtered and the filtrate evaporated to dryness at 40°C in a rotary evaporator [12]. The dried mass was stored and used for further investigations.

Phytochemical screening

Phytochemical screening were carried out on both AFE and MFE examining the chemical secondary metabolites of alkaloids, flavonoids, glycosides, tannins, terpenes, and saponins [13-15].

Test animals

Adult healthy male Swiss albino mice (Balb/C strain), 20–30 g in weight, were used for all the investigations. Procedure of all the experiments was reviewed and carried out in accordance with the institutional ethics committee guidelines (Animal models), 04-12-2014. Mice were housed in a polycarbonate cage under controlled temperature, i.e., at 22°C on a 12 h light/dark cycle and were fed with mice feed obtained from laboratory of Amrut, Pune, India, and water ad libitum.

Induction of DM in test animals

Alloxan monohydrate (150 mg/kg body weight [b.w]) dissolved in citrate buffer (0.1 M, pH 4.5) was intraperitoneally administered to overnight fasted test mice for induction of diabetes [16]. After 72 h of alloxan injection, mice with fasting blood glucose (FBG) above 200 mg/dl were considered as diabetic and included in the investigations.

Antioxidant enzyme assays

Swiss albino mice were divided into four groups consisting of five mice in each group. Control group, consisting of diabetic mice, administered with only distilled water and diabetic mice in test groups were administered with increasing doses (150 mg/kg bw–550 mg/kg bw) of MFE intraperitoneally to carry out the antioxidant enzyme assays. After injection, FBG levels were monitored at 0.5 h, 1 h, 2 h, 4 h, and 6 h. After 6 h, the mice were fed and blood glucose levels were monitored at 24 h [17].

Antihyperglycemic study

Alloxan-induced diabetic mice were divided into one control and five test groups comprising five mice in each group. Control group, consisting of diabetic mice, administered with only distilled water and diabetic mice in all groups were administered with increasing doses of MFE at 250 mg/kg bw to 450 mg/kg bw. The doses were intraperitoneally administered in alternate days for a total of 21 days.

Kidney histopathological studies

Kidney tissues were extracted after sacrificing by decapitation on 22°C on a 12 h light/dark cycle and were fed with mice feed obtained from laboratory of Amrut, Pune, India, and water ad libitum.

Antihyperglycemic study

The effects of the results of MFE on elevated FBG levels is shown in Fig. 1. There was minimal reduction (32.2%) of FBG level at the dose of 150 mg/kg bw at 6 h. However, a significant reduction (31.3%) was observed at 250 mg/kg bw at 2 h, 44.7% at 4 h, and 50% at 6 h from that of the control group. At 350 mg/kg bw, the FBG levels were 45.5% at 2 h, 61.3% at 4 h, and 66.7% at 6 h when compared with the diabetic control group in the study. The higher doses of 450 mg/kg bw and 550 mg/kg bw showed drastic reduction of FBG level. At 450 mg/kg bw, the FBG levels were 62% at 2 h, 68.2% at 6 h, and 73.3% at 6 h, while at 550 mg/kg bw the FBG levels were 67.4% at 2 h, 75.6% at 4 h, and 79% at 6 h. Hence, 250 mg/kg bw dose of MFE was considered to be the optimum dose for the study.

Kidney histopathological studies

As shown in Fig. 2, kidney of diabetic mice, the glomerulus has been shrunken which leads to widening of Bowman’s capsule space, proximal convoluted tubule (PCT) with wide lumen, lined with high and deformed cuboidal cells, distal convoluted tubule (DCT). The high and deformed cuboidal cells, distal convoluted tubule (DCT).
with wide lumen and deformed cuboidal cells when compared with normal mice. The normal physiological structure of glomerulus without much widening of Bowman’s capsule space and near normal PCT and DCT was seen in both ascorbic acid- and MFE-treated diabetic mice.

DISCUSSION

Alloxan, referred to as alloxan monohydrate (2, 4, 5, 6-tetraoxypyrimidine; 5, 6-dioxyuracil), is a known diabetogenic agent and used to induce diabetes in laboratory rats and mice. It is a toxic glucose analog that destroys pancreatic beta-cells (insulin-producing cells) [23]. Therefore, alloxan administration in mice shows a significant increase in blood glucose level in the study.

Although the AFE had a good effect on diabetes, the effect of MFE was quite better than the former. The MFE reflected the good effects due to the presence of flavonoids and tannins compound which showed in phytochemical screening of MFE, while the other extract did not have much flavonoids and tannins. Flavonoids are highly effective free radical scavengers that could scavenge oxidized molecules, including singlet oxygen, and various other free radicals implicated in several diseases [24]. Flavonoids suppress the formation of reactive oxygen, chelate trace elements involved in free radical production, scavenge reactive species, and upregulate and protect antioxidant defenses [25]. Flavonoids might have the potential of secreting insulin from existing pancreatic β-cell [26]. There might be another possibility of flavonoids that is to protect the DNA from the oxidative damage, and hence, it could resist the changes in β-cell [27]. Similarly, tannins confer oxidative stress tolerance on plants. The short-term antihyperglycemic study has revealed that 250 mg/kg b.w of MFE was able to reduce FBG level in more significant way. Hence, 250 mg/kg b.w dose of extract was considered to be an optimum dose for the study.

SOD (Mn-SOD and CuZn-SOD) presents in mitochondria and cytosol is an antioxidant enzyme that defends against reactive oxygen species. They eliminate superoxide anion to hydrogen peroxide [28]. CAT enzyme, which is also an antioxidant enzyme, neutralized hydrogen peroxide to water and oxygen [29]. GR antioxidant enzyme in cytoplasm functions through converting oxidized glutathione to reduce form GSH and helps in maintaining a balanced intracellular environment. In this study, it was found that treatment with extract restores and increases the activities of antioxidants enzymes when compared with untreated diabetic mice. Therefore, it could be said that MFE of *P. thyrsiflorus* protects the kidney tissue from further oxidative stress under diabetic condition.

From histological study, it is confirmed that MFE of *P. thyrsiflorus* has the ability to protect and restore oxidative stress injury induced by diabetes. It is also confirmed from the study that extract is able to suppress oxidative stress in the tissue and enhancing the activity antioxidative enzyme, thus allowing tissue to recover and halt from further damage.

Table 2: Mean activities of SOD, CAT, and GR in kidney of different experimental groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>SOD (Units/mg protein)</th>
<th>CAT (Units/mg protein)</th>
<th>GR (Units/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CuZn-SOD</td>
<td>Mn-SOD</td>
<td>CAT</td>
</tr>
<tr>
<td>Group 1</td>
<td>6.33±0.57</td>
<td>13.46±0.42</td>
<td>2.42±0.14</td>
</tr>
<tr>
<td>Group 2</td>
<td>3.4±0.15</td>
<td>8.9±0.46</td>
<td>1.54±0.10</td>
</tr>
<tr>
<td>Group 3</td>
<td>5.11±0.49***</td>
<td>11.6±0.26***</td>
<td>2.29±0.11***</td>
</tr>
<tr>
<td>Group 4</td>
<td>5.02±0.18***</td>
<td>12.05±0.28***</td>
<td>2.24±0.09***</td>
</tr>
</tbody>
</table>

Group 1: Normal mice, Group 2: Diabetic mice, Group 3: Diabetic mice treated with ascorbic acid, Group 4: Diabetic mice treated with MFE. Values are expressed as Mean±SEM, n=5. (**p˂0.01, ***p˂0.001 versus diabetic control group). SOD: Superoxide dismutase, CAT: Catalase, GR: Glutathione reductase.
CONCLUSION
The findings of the present study signified that MFE of P. thyrsiflorus has antihyperglycemic potential and treatment with extract may provide beneficial effects against oxidative stress. However, the exact mechanism is yet to be elucidated and further investigation is underway.

ACKNOWLEDGMENT
The authors would like to thank the Department of Science and Technology (DST), New Delhi, India, for providing INSPIRE fellowship, DRS programme, for providing infrastructural support to the Department of Biochemistry, NEHU, Shillong.

CONFLICTS OF INTEREST
There are no conflicts of interest. All authors contributed immensely for this work and prepared the manuscript.

REFERENCES