ANTICANCER EFFECT OF AFRICAN LEAVES (VERNONIA AMYGDALINA DEL.) TO T47D CELL RESISTANT

RIALITA LIFIANI1, URIP HARAHAP1*, POPPY ANJELISA ZAITUN HASIBUAN1, DENNY Satria2
1Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia. 2Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia. Email: urip.hrp@gmail.com

ABSTRACT

Objective: African leaves (Vernonia amygdalina Del) have medical effect to threat many kind of diseases, and recently, it is suggested have anticancer effect. Therefore, this study is held to testing anticancer activity of extract African leaves to T47D cell resistant.

Method: Cytotoxic activity was determined in vitro used 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide method. Analysis of cell cycle and apoptosis were determined with flow cytometry method.

Results: Examination cytotoxicity of extract n-hexana African leaves (ENDA), extract ethyl acetate African leaves (EEADA), and extract ethanol African leaves (EEDA) to T47D cell were showed with IC50 values 164.85±1.88 µg/mL for ENDA; 55.50±0.79 µg/mL for EEADA and 311.72±4.15 µg/mL for EEDA. Therefore, EEADA has the most active activity as anticancer. Molecular evolution assay produced T47D cell resistant. Examination toxicity of EEADA to T47D-cell resistant showed IC50 values 59.19±0.55 µg/mL. EEDA might able inhibit cell cycle at G0-G1 phase and increased apoptosis of T47D cell resistant.

Conclusion: This study shows that EEDA can be developed as cochemotherapy to breast cancer with inhibits cell cycle and increase apoptosis.

Keywords: African leaves, T47D, Resistant, Cytotoxic, 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide, Molecular evolution assay, Cell cycle, Apoptosis, Flow cytometry.

© 2018 The Authors. Published by Innovare Academy Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11s1.26551

INTRODUCTION

Cancer is also described as a disease caused by a damage of cell-cycle regulation [1]. Breast cancer is cancer that commonly occurred, especially in women. Data from American cancer society, in 2013; there were 64,640 cases of breast cancer. Approximately. 39,620 females were died every year because of breast cancer [2].

Breast cancer occurs when breast cells start to grow uncontrollably. These cells can invade nearby tissues and spread throughout the body [3]. Several advantages have been achieved for breast cancer treatment, including combinatorial treatment of chemotherapy and therapy with antibody and endocrine therapy [4]. Doxorubicin is one of chemotherapy agents that effective to breast cancer [5]; however, chemoresistance is still a major obstacle in breast cancer treatment [4].

Research into plants with anticancer effects is still encouraged with a view to discover any new drugs with less toxic but more potent effects [6]. The study was carried out to investigate the activity of ethyl acetate extract of Zanthoxylum a canthopygium DC., fruit (EZE) against doxorubicin-resistance T47D cells suggest that EZE can use for chemoresistance cancer cell [7].

One of the plant materials that uses as an alternative to treat cancer is African leaves (Vernonia amygdalina Del.), which use as medical plant to treat various disease and has efficacy such as anti-bacterial, anti-fungal, anti-parasitic, anti-malaria, antivirus, anti-cancer, anti-diabetic, and antioxidant [8]. The purpose of this study was to investigate the activity of extract African leaves (U. amygdalina Del.) against T47D cell resistant.

MATERIALS AND METHODS

Materials

Fresh and old African leaves were taken from Tangkul street, Siduarjo Hillir village, Medan Tembung district, North sumatra, Indonesia. African leaves was identified in Research Centre for Biology, Indonesian Institute of Science, Bogor. n-hexane, ethyl acetate and ethanol were purchased from Merck (Darmstadt, Germany), Doxorubicin (Ebewe), DMSO (Sigma), [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) (Sigma), RPMI media and Phosphate Buffer Saline (FBS) 10% v/v (Gibco, Grand Island, NY, USA).

Preparation of extraction

African leaves were dried in 45°C temperature and powdered. Simplicia powder of African leaves (500 g) was extracted using n-hexana with maceration method. After 3 days of maceration in room temperature, maserati was transferred using rotatory evaporator, dried with freeze dryer [9-13]. Ethyl acetate and ethanol solvent used to maceration subsequently with the same way.

Cytotoxic examination

T47D cell was planted on 96 well-plate with density 1×104/wells in RPMI growth media, maximal volume was 0.1 mL per wells. Incubation was done in incubator at 37°C in 5% CO2 for 24 h to get well growth. Afterward, media change was done with addition extract n-hexana African leaves (ENDA), extract ethyl acetate African leaves(EEADA), and extract ethanol African leaves (EEDA)/doxorubicyn solution in various concentration. After 24 h incubation, media was changed with 100 µL MTT (sigma) with concentration 5 mg/mL per well. Cell was incubated again for 4–6 h in incubator at 37°C in 5% CO2. MTT reaction was stopped with stopper reagent [SDS 10% in HCL 0.01 N], plate was wrapped to avoid light penetration and was silenced in one night. Data of absorbance were changed to percentage of surviving cell and analyzed with SPSS 17 [14]. The lowest IC50 values of extract was chosen to testing for cell cycle and apoptosis.

Molecular evolution assay

T47D cell was exposed with doxorubicin 0.02 g/mL for 72 h followed media turnover until 80% cell confluent and was done with six times...
The next step was examination toxicity of EEADA to T47D cell resistant, to IC50 increasing of IC50 0.20±0.02 µg/mL, forth exposure (R4) was 2.41±0.04 µg/mL, and sixth exposure with SPSS 17 and obtained IC50 T47D that survive. The cell calculation outcomes then analyzed with to T47D from MEA inversely proportional to experiment compound.

The next step was examination toxicity of EEADA to T47D cell resistant, and the result was compared to IC50 value of EEADA to T47D cell nonresistant to identified effect administration of EEADA to T47D cell which has been resistant. The value of IC50 for EEADA to T47D cell was 55.50±0.79 µg/mL, and to T47D cell resistant was 59.19±0.55 µg/mL. There was increasing IC50 value of EEADA to T47D resistant but still able to consider as an anticancer because these extracts have potential to inhibit cancer cell growth if IC50 value ≤100 µg/mL [17,18].

Characteristic toxicity of EEADA to T47D cell because there was flavonoid compound that able to inhibit cancer cell proliferation [21], triterpenoid/steroid that able induced apoptosis [22] and a sponium that able to identified cancer cell and altered permeability membrane of cancer cell [23].

The one way to resolve resistance of chemotherapy was inhibiting activity of P-gp. The content of flavonoid that lied in EEADA may able inhibit P-gp. The plant that contain flavonoid was ideal inhibitor for P-gp because typically not toxic and the safety was guaranteed generationally for long time. Flavonoid from essential material was considered as P-gp inhibitor that able to increase drugs bioavailability, penetration to the tissue, and decreasing drug excretion [24-26]. Other than direct interaction with P-gp, flavonoid may able decrease gen MDR (multidrug resistance) expression [27]. The content of triterpenoid/steroid in EEADA has capability to block Nuclear Factor-kappa B (NF-kB) where excess expression of P-gp was regulated by transcription factor of NF-kB [28].

The further examination to identified capability of EEADA to increasing cancer cell death with modulating cell cycle programs with flow cytometry methods. Examination of cell cycle was done to select T47D resistance. The outcome of flow cytometry EEADA to T47D resistance (Fig. 2) was compared to controls (Fig. 3). Data were analyzed descriptively with compared between exposed and control cell resistant. The greatest cell accumulation was held in G0-G1 phase from EEADA exposure to T47D cell resistant in value 46.18% compared to control was 40.62%, that can be considered mechanism of inhibition cell cycle in cell T47D resistant that expose with EEADA in G0-G1 phase. Higher percentage that compared to control show that cell accumulation can be synchronized, other than that it gives chance to repair the damaged DNA and if this mechanism was failed, this process will be continued by cell apoptosis. Therefore, regulation process of cell cycle plays roles in preventing of cancer [29].

Apoptosis examination was done to T47D cell resistant with flow cytometry method. The result of flow cytometry of EEADA to T47D cell resistant (Fig. 4) compared to controls (Fig. 5). The T47D cell resistant that exposed with EEADA has apoptosis cell percentage greater 4.47% than controls 3.37% and cell percentage that experienced apoptosis at the end was greater 12.05% than control 6.34%. It shows that mechanism of cell death with administration EEADA may able increase cell apoptosis and decrease necrotic cell.

![Fig. 1: Increasing IC50 value doxorubicin MEA chart](image-url)
The capability of EEADA is to increase cancer cell death, inhibit cell cycle, and induced cell apoptosis. It is caused by flavonoid and triterpenoid/steroid that have efficacy as anticancer agents [30].

CONCLUSION
The result of this study show that EEADA was the most potent as anticancer agent to T47D cell compared to ENDA and EEDA and have toxic effect to T47D cell resistant. The capability of EEADA to inhibit T47D cancer cell resistant growths with inhibiting cell cycle in G0-G1 phase and able to induce apoptosis.

REFERENCES