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ABSTRACT 

The objective of the present study was to investigate whether the alcoholic seed extract of Celastrus paniculatus (ASECP) could potentially prevent 
aluminium induced neurotoxicity in the cerebral cortex, hippocampus and cerebellum of the rat brain. Male albino rats were administered with 
AlCl3 at a dose of 4.2mg/kg/day i.p. for 4 weeks. Experimental rats were given Celastrus paniculatus seed extract in two different doses of 200mg 
and 400mg/kg/day orally 1hr prior to the AlCl3 administration for 4 weeks. At the end of the experiments, aluminium administration significantly 
decreased the level of GSH and the activities of SOD, CAT, GPx, GR, Na+/K+ ATPase, Ca2+ ATPase and Mg2+ ATPase and increased the level of LPO and 
the activities of ALP, ACP, ALT and AST in all the brain regions when compared with control rats. Pre-treatment with ASECP at a dose of 200mg/kg 
b.w increased the antioxidant status and activities of membrane bound enzymes and also decreased the level of LPO and the activities of marker 
enzymes significantly, when compared with aluminium induced rats. Al treatment also revealed an increase in DNA fragmentation as evidenced by 
an increase in number of comets. Interestingly, ASECP pretreatment reduced the damage inflicted on DNA by aluminium. Aluminium induction also 
caused histopathological changes in the cerebral cortex, cerebellum and hippocampus of rat brain which was reverted by pretreatment with ASECP. 
The present study clearly indicates the potential of seed extract of Celastrus paniculatus in counteracting the damage inflicted by Al on rat brain 
regions. 
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INTRODUCTION 

The blooming industrialized society increases aluminium 
bioavailability as a result of continued acidification of the 
environment. Aluminium salts are used in the pharmaceutical 
industry and they are generally used as flocculants in treating 
drinking water. Nowadays, aluminium is recognized as a neurotoxic 
agent [1, 2]. During the last 30 years, the emergence of extensive 
evidence on aluminium poisoning has demonstrated the adverse 
effect of aluminium in inducing memory impairment, personality 
changes and dementia in humans [3, 4, 5, 6 ]. Additionally, 
bioavailable aluminium seems to be associated with neurological 
deterioration during aging [7]. Aluminium (Al) is one of the most 
abundant elements in the biosphere and causes adverse effects on 
various organs [8, 9]. Human population is constantly exposed to Al 
through various sources such as Al cooking utensils, certain 
beverages and drinking water [10, 11]. High levels of Al have been 
linked with an increased risk of a number of pathogenic disorders 
such as microcytic anemia, osteomalacia as well as 
neurodegenerative disorders [12, 13, 14 ]. Al induced neurotoxicity 
is caused by various factors which include induction of nitric oxide, 
free radical induced damage and neurotransmission alterations [15, 
16]. Both apoptosis and necrosis are suggested to be the 
mechanisms involved in cellular death resulting from Al toxicity 
[17]. Sua´rez-Ferna´ndez et al. [18] have reported DNA 
fragmentation and changes in nuclear morphology after Al exposure. 
Further, mutagenic effects of Al toxicity have also been observed by 
various researchers [19, 20]. Al-induced free radicals load may be 
responsible for initiating the process of apoptosis. 

A variety of plant products have been used for prevention and 
treatment of a broad range of diseases. Celastrus paniculatus willd 
(CP) belongs to family Celastraceae was in use from time 
immemorial to treat brain related disorders and to enhance learning 
and memory [21]. It is a  large,   woody, climbing shrub,  distributed  

 

almost all over India up to an attitude of 1800m and is known for its 
ability  to   improve   memory   in   man [22]  and improve memory 
process in rats [23]. The seeds and seed oil have been used in 
Ayurvedic medicine as a memory enhancer. The seed contain sterol, 
alkaloids and a bright colouring matter. Celapanin, Celapanigin, 
Celapagin, Celastrine and paniculatine are the some important 
alkaloids present in the seeds [24].                      

More recently extracts of CP plants have exhibited a variety of 
pharmacological effects. A methanolic extract of CP plant material 
exhibited free radical scavenging effects [25], and CP seed aqueous 
extract was shown to have cognitive-enhancing properties in rats 
and antioxidant effects in rat brain [26]. The CP seed water soluble 
extracts could be potentially useful for stimulatory antioxidant 
defense mechanism, thereby preventing neuronal damage resulting 
from a variety of oxidative stress events. A characteristic of some of 
the brain disorder is that oxidative stress resulting from increased 
production of reactive oxygen species (ROS) increases the rate at 
which brain disease progresses [27]. The plant Celastrus paniculatus 
also exhibits potent anti-inflammatory [24], antioxidant [25], 
hypolipidemic [28], anti-arthritic [29], antimalarial [30], 
antibacterial [31] and antifungal [32] properties.  

Various drugs/compounds have been examined for their role against 
aluminium-induced neurotoxicity in rat and mice models [33,  34,  
35,  36].The present study was designed to investigate the effect of 
alcoholic extract of Celastrus paniculatus [ASECP] in counteracting 
aluminium toxicity in various brain regions.  

Materials and Methods 

Chemicals 

Glutathione reductase, glutathione (GSH) reduced form, glutathione 
oxidized form (GSSG) tert-ÂÕÔÙÌ ÈÙÄÒÏÐÅÒÏØÉÄÅȟ υȟ υȭ ÄÉÔÈÉÏÂÉÓ-2 
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nitrobenzoic acid (DTNB) were purchased from SRL. Nicotinamide 
adenine dinucleotide phosphate reduced (NADPH) was purchased 
CDH. All the other chemicals used were of the analytical grade. 

Preparation of plant extract 

The seeds of Celastrus paniculatus were purchased at Chennai, Tamil 
Nadu and will be authenticated by, Dr.A.Sasikala, Captain Srinivasa 
Murthi Drug Research Institute for Ayurveda, Arumbakkam, 
Chennai, Tamil Nadu. The shade dried seeds were crushed and 
extracted with ethyl alcohol in the ratio of 1:3 for 30 days and all the 
traces of the solvent were consequently removed. Thick brown 
extract obtained from the turf  and   used for the treatment of the 
rats [37].The above brown extract was dissolved in  water and given 
to the rats as aqueous suspension. 

Animals 

Male Albino rats weighing 200-250g were obtained from Central 
Animal House, DR.ALMPGIBMS, University of Madras, Taramani 
campus, Chennai-113, Tamil Nadu, India. Rats were housed 
separately in polypropylene cages and fed standard pellet diet kept 
under hygienic conditions. Rats were kept on a 12hr light and dark 
cycle with free access to water ad libitum. All experiments and 
protocols described in the present study were approved by the 
Institutional Animal Ethics Committee (IAEC) of DR.ALMPGIBMS, 
University of Madras, Taramani campus, Chennai-113, Tamil Nadu, 
India.  

Treatment Schedule 

Rats were divided into five experimental groups of 6 animals each. 
Group I: Control, Group II: AlCl3 (4.2 mg/kg b.w) intraperitoneally 
for 28 days [38], Group III: AlCl3+ASECP (200 mg/kg b.w) orally for 
28 days, Group IV: AlCl3+ASECP (400 mg/kg b.w) orally for 28 days, 
Group V: ASECP alone (200 mg/kg b.w) orally for 28 days. 

Tissue Preparation 

After treatment period, experimental animals and control animals 
were sacrificed by cervical dislocation. Brains were immediately 
taken out and washed with ice cold saline to remove blood and kept 
at -80°C. Various regions of the brain viz., cerebral cortex, 
hippocampus and cerebellum were rapidly dissected from the intact 
brain carefully on ice plate according to the stereotaxic atlas of 
Paxinos and Watson [39]. The right and the left cerebral cortices and 
hippocampus were pooled to make one sample of the tissue. The 
cerebral cortex, hippocampus and cerebellum were homogenized 
individually in Tris buffer (pH 7.4). The tissue homogenate (10%) 
was made (w/v), which was centrifuged at 3000g for 10min. The 
resulting pellet (P1) consisting of nuclear and cellular material was 
discarded. The supernatant (S1) containing mitochondria, 
synaptosomes, microsomes and cytosol was further ultracentrifuged 
at 25,000xg for 1hr. Pellet had membrane fraction, while the 
supernatant had cytosol fraction. In this study, all biochemical 
estimations were performed in the cytosol fraction. Homogenates 
were kept at -80°C and thawed just before the start of biochemical 
estimation. All processes were carried out in cold conditions. 

Biochemical Estimation 

Lipid peroxidation products were determined according to the 
method of Devasagayam and Tarachand [40], as the quantity of 
malondialdehyde (MDA) produced. The reaction product was 
measured spectrophotometrically at 540 nm. Reduced glutathione 
(GSH) was assayed by the method of Moron et al., [41] on the basis 
of the reaction of 5-5, Dithiobis-2-nitrobenzoic acid which is readily 
reduced by sulfhydryls forming a yellow substance which is 
measured at 412nm. The enzyme Glutathione peroxidase (GPx) was 
assayed according to the method of Rotruck et al., [42]. The assay 
takes advantage of concomitant oxidation of NADPH by GR, which is 
measured at 340nm. Enzyme activity was expressed as units/mg 
protein. GR activity was assayed by the method of Carlberg and 
Mannervik [43]. The enzyme activity was quantitated at room 
temperature by measuring the disappearance of NADPH at 340nm 
and was calculated as nmol NADPH oxidized/min/mg protein. 
Superoxide dismutase activity was measured according to the 
method by Marklund and Marklund [44]. Enzyme activity was 

expressed as units/mg protein. One unit is equivalent to the amount 
of SOD required to inhibit 50% of pyrogallol auto oxidation. Catalase 
(CAT) activity was determined by following the decrease in 240 nm 
absorption of hydrogen peroxide (H2O2). It was expressed as nano 
moles of H2O2 reduced per minute per milligram of protein [45]. 
Na+/K+ ATPase was assayed by the method of Bonting [46]. The 
reaction mixture consists of Tris HCl buffer (pH 7.5), 50mM MgSO4, 
50mM KCl, 600mm NaCl, 1mm EDTA, 40mM ATP, 10% TCA, 2.5% 
Ammonium molybdate and desired reagent in 1ml. Na+/K+ ATPase 
activity was expressed as µmoles of phosphorous liberated/min/mg 
protein under incubation conditions. The activity of Mg2+ ATPase 
was assayed by the method of Ohinishi et al., [47]. The enzyme 
activity was expressed as µmoles of phosphorous liberated/min/mg 
protein. Ca2+ - ATPase was estimated as described by the method of 
Hjerten and Pan [48]. Alkaline phosphatase (ALP) and acid 
phosphatase (ACP) activities were measured using p-nitrophenyl 
phosphate as substrate, according to the method described by 
Dasgupta and Ghosh [49]. Activities of alanine aminotransferase 
(ALT) and aspartate aminotransferase (AST) of brain were 
measured through determination of 2, 4 ɀdinitrophenyl hydrazone 
of pyruvate [50]. The protein content in the rat brain homogenates 
(cerebral cortex, hippocampus and cerebellum) was measured by 
,Ï×ÒÙȭÓ ÍÅÔÈÏÄ ɍυρɎȢ 

DNA fragmentation studies 

Tissue slices were placed in the digestion buffer (10 mM TrisɀHCl 
with pH 8.0; 0.1 M EDTA with pH 8.0; 1% SDS and proteinase K with 
concentration of 1 mg/10 ml) and were incubated (14ɀ18 h, 55ǓC) in 
a shaking water bath. The DNA contents were extracted, 
precipitated, and stored as described below for the analysis by 
agarose gel electrophoresis. After digestion, samples were extracted 
three times with 10% saturated phenol/chloroform/isoamyl alcohol 
(24:24:1) and were precipitated using ethanol. The precipitates 
were rinsed two times with 70% ethanol, air dried, and resuspended 
in Tris EDTA buffer. DNA contents were measured using a 
spectrophotometer (A260/A280), and only samples with 1.8 ratios 
were used. Agarose gel electrophoresis was then carried out to 
analyze the fragmentation. 

Histopathology 

After sacrifice of all animals the brain was dissected out and fixed in 
10% neutral formalin. The tissues were processed in the usual way 
for paraffin embedding and sections were mainly stained with 
Hematoxylin and Eosin (HE) for histopathology (20x). 

Statistical analysis 

Data represents mean ± SD. Statistical comparisons were performed 
ÂÙ ÏÎÅ ×ÁÙ ÁÎÁÌÙÓÉÓ ÏÆ ÖÁÒÉÁÎÃÅ ɉ!./6!Ɋ ÆÏÌÌÏ×ÅÄ ÂÙ ÓÔÕÄÅÎÔȭÔȭ ÔÅÓÔ 
using SPSS 10 version. If ANOVA analysis indicated significant 
ÄÉÆÆÅÒÅÎÃÅÓȟ 4ÕËÅÙȭÓ ÐÏÓÔ-hoc test was performed to compare mean 
values between treatment groups and control. A value of p<0.05 was 
considered as statistically significant. 

RESULTS 

The observations made on the different groups of experimental rats 
indicate that continuous administration of AlCl3 induced alterations 
in the biochemical parameters as well as the histopathology in 
various brain regions that were analyzed at the end of the 
experimental period (28 days). Oral administration of alcoholic seed 
extract of Celastrus paniculatus (ASECP) reverted back all the 
alterations to near normal when compared with AlCl3 induced rats. 
However, rats treated with ASECP alone did not show any 
alterations and resembled that of control rats. 

Fig 1 shows the changes in the LPO levels in cerebral cortex, 
hippocampus and cerebellum of control and experimental rats. The 
level of LPO was found to be increased (p<0.01) in all the above 
brain regions of AlCl3 induced group when compared with control 
group. Pretreatment with 200mg/kg b.w. of ASECP decreased the 
level of LPO in all the brain regions significantly than 400mg/kg b.w 
dosage.  

Fig 2 shows the alterations in the GSH levels in cerebral cortex, 
hippocampus and cerebellum of control and experimental rats. The 
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GSH level was found to be decreased in the cerebral cortex, 
hippocampus and cerebellum in AlCl3 induced rats than in control 
rats. Pretreatment with ASECP at a dose of 200mg/kg b.w increased 
the level of GSH significantly (p<0.01) when compared with 
400mg/kg b.w dosage. 

Fig 3 and 4 shows the effect of ASECP on the activities of GPx and GR 
in the cerebral cortex, hippocampus and cerebellum of control and 
experimental rats. The activities of GPx and GR was found to be 
significantly decreased (p<0.05) in the brain regions viz., cerebral 
cortex, hippocampus and cerebellum of AlCl3 induced group when 
compared with control group. Pretreatment with ASECP at 
200mg/kg b.w. dosage showed a significant increase in the activities 
of GPx and GR than 400mg/kg b.w. dosage in all the above 
mentioned brain regions.  

Fig 5 and 6 shows the effect of ASECP on the activities of SOD and 
CAT in the cerebral cortex, hippocampus and cerebellum of control 
and experimental rats. AlCl3 induced group showed a decreased 
(p<0.01) activity of SOD and CAT in all the brain regions when 
compared to that of control group. Pretreatment with 200mg/kg b.w 
dosage increased the activities of SOD and CAT to near normal when 
compared with 400mg/kg b.w dosage.  

Table 1 shows the protective effect of ASECP on the activities of 
Na+/K+ ATPase, Mg2+ ATPase and Ca2+ ATPase in the cerebral cortex, 
hippocampus and cerebellum of control and experimental rats. AlCl3 
induced group showed a concomitant decrease in the activities of 
Na+/K+ ATPase, Mg2+ ATPase and Ca2+ ATPase when compared with 
control group. Pretreatment with ASECP at a dose of 200mg/kg b.w 
significantly (p<0.01) prevented the decrease in the activities of 
Na+/K+ ATPase, Mg2+ ATPase and Ca2+ ATPase than 400mg/kg b.w 
dosage.  

Table 2 shows the effect of ASECP on the activities of ALP and ACP in 
the cerebral cortex, hippocampus and cerebellum of control and 
experimental rats. AlCl3 induced rats showed a significant increase in 
the activities of ALP and ACP in all the brain regions when compared 
to that of control rats. Pretreatment with ASECP at a dose of 
200mg/kg b.w significantly decreased the activities of ALP and ACP 
to near normal than 400mg/kg b.w dosage. 

Table 3 shows the effect of ASECP on the activities of SGOT and SGPT 
in the cerebral cortex, hippocampus and cerebellum of control and 
experimental rats. The activities of SGOT and SGPT were found to be 
significantly increased in all the brain regions of AlCl3 induced group 
when compared with control group. Pretreatment with ASECP at 
200mg/kg b.w dosage reverted back the above changes to near 
normal than 400mg/kg b.w dosage. 

Treatment with ASECP alone did not show any changes in all the 
above parameters and resembled control rats. 

Fig 7 shows the effect of alcoholic seed extract of Celastrus 
paniculatus (ASECP) in aluminium induced histological changes in 
the cerebral cortex of control and experimental rats. Fig 7A 
(Control): Transverse section of cerebral cortex of brain showing 
normal histo-architecture (H&E, 20x). Fig 7B (Al induced): 
Transverse section of cerebral cortex of brain showing diffused 
gliosis and pericellular oedema (H&E, 20x). Fig 7C (Al + ASECP 200 
mg/kg body weight): Transverse section of cerebral cortex of brain 
showing mild gliosis and mild oedema when treated with 200mg/kg 
body weight dosage of ASECP (H&E, 20x). Fig 7D (Al + ASECP 400 
mg/kg body weight): Transverse section of cerebral cortex of brain 
showing more gliosis and oedema when compared with 200 mg/kg 
body weight (H&E, 20x). Fig 7E (ASECP 200 mg/kg body weight 
alone): Transverse section of cerebral cortex of brain resembles that 
of the control (H&E, 20x). 

Fig 8 shows the effect of ASECP in Aluminium induced  histological 
changes in the cerebellum of control and experimental rats. Fig 8A 
(Control) Transverse section of cerebellum showing normal histo-
architecture (H&E 20x). Fig 8B (Al induced) Transverse section of 
cerebellum showing disruption in the Purkinjee cells layer (H&E 
20x). Fig 8C (Al + ASECP 200mg/kg b.w) Transverse section of 
cerebellum showing the regeneration of Purkinjee cell layer (H&E 
20x). Fig 8D (Al + ASECP 400mg/kg b.w) Transverse section of 

cerebellum showing slight disruptions of Purkinjee cell layer (H&E 
20x). Fig 8E (ASECP 200mg/kg b.w alone) Transverse section           
of     cerebellum    showing   resembling  that of control (H&E 20x). 

Fig 9 shows the effect of alcoholic extract of Celastrus paniculatus 
(ASECP) on aluminium induced histological changes in the 
hippocampus of control and experimental rats. Fig 9A (Control) 
Transverse section of hippocampus of brain shows normal histo 
architecture (H&E, 20x). Fig 9B (Al induced) Transverse section of 
hippocampus of brain shows high level of pyramidal cell 
degeneration with marked cell distortion (H&E, 20x). Fig 9C (Al + 
ASECP 200 mg/kg b.w) Transverse section of hippocampus of brain 
shows less pyramidal cell degeneration with less cell distortion 
(H&E, 20x). Fig 9D (Al + ASECP 400 mg/kg b.w) Transverse section 
of hippocampus of brain shows slightly more pyramidal cell 
degeneration and cell distortion (H&E, 20x). Fig 9E (ASECP 200 
mg/kg b.w alone) Transverse section of hippocampus of brain 
resembling that of control (H&E, 20x). 

The DNA damage caused in the cell as a result of aluminium 
induction was examined by agarose gel electrophoresis is shown in 
Fig 10. The results indicated that DNA of Al-induced group showed a 
comet tail indicating the DNA damage arising from the genotoxicity 
in the Al-induced cell when compared to the DNA of control cell. In 
ASECP pretreated rats, the damage to DNA was appreciably reduced 
when compared to Al-induced rats. ASECP alone administered group 
resembled that of control. 

DISCUSSION 

Aluminium has been proposed as an environmental factor that may 
contribute to some neurogenerative diseases and affect some 
ÅÎÚÙÍÅÓ ÁÎÄ ÏÔÈÅÒ ÂÉÏÍÏÌÅÃÕÌÅÓ ÒÅÌÅÖÁÎÔ ÔÏ !ÌÚÈÅÉÍÅÒȭÓ ÄÉÓÅÁÓÅȢ  )Î 
the present study, there were significant increases in the oxidative 
stress markers lipid peroxidation following aluminium exposure for 
28 days in the cerebral cortex, cerebellum and hippocampus regions 
of rats. Such results are in harmony with those obtained by Deloncle 
et al. [52] and Johnson et al. [53] who reported that the 
neurotoxicity of aluminium may be a result of LPO. Furthermore, 
Nehru and Anand [54] reported a significant increase in brain 
thiobarbituric acid reactive substances in rats after stimulation by 
aluminium salts which was known to be bound by the Fe3+ carrying 
protein transferrin, thus reducing the binding of Fe2+ and increasing 
free intracellular Fe2+ that causes the peroxidation of membrane 
lipids and consequently membrane damage. Aluminum, being an 
inert metal, has been suggested to induce oxidative damage 
indirectly by potentiating the peroxidative effect of Fe2+. It promotes 
reactive oxygen species (ROS) formation. ROS subsequently attack 
almost all cell components including membrane lipids thus 
producing lipid peroxidation [55]. The findings of the present study, 
also, showed that the rise in LPO in aluminium treated rats was 
accompanied by concomitant decrease in the activity of some 
antioxidant enzymes involved in the detoxification of ROS, namely 
SOD, CAT as well as the level of GSH in the cortex, cerebellum and 
hippocampus tissues comparing with the control declaring the 
prooxidant effect of Al. These findings agreed with the antecedent 
studies of Savory et al. [56] and Johnson et al. [53] whom showed 
that aluminium exposure enhanced the neuronal lipid peroxidative 
damage with concomitant alterations in the enzymatic antioxidant 
defense status, thus having serious bearing on the functional and 
structural development of the central nervous system [57]. Similar 
data recorded a decrease in the antioxidants such as GSH [58] and 
SOD activity [59] in the brain of aluminium exposed rats and human 
[57]. Moreover, such results are consistent with the studies 
indicated that aluminium intake produced an oxidative stress-
related change, contributed to its neurotoxicity [60]. However, in 
rats, a significant relationship between aluminium exposure and the 
presence of oxidative stress was established also by Go ̲mez et al. 
[61]. This could be caused by inflicting damage to membrane lipids, 
proteins and antioxidative enzyme defense system [34].The 
elevation of LPO in the cortex, cerebellum and hippocampus in the 
present study and other ones [57] suggested participation of free 
radical- induced oxidative cell injury in mediating neurotoxicity of 
aluminium. Lipid peroxidation of biological membranes results in 
the loss of membrane fluidity, changes in membrane potential, an 
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increase in membrane permeability and alterations in receptor 
functions [54, 62]. However, the increased aluminium concentration 
could deleteriously affect the neurons, leading to depletion of 
antioxidants and metal ions [63] through the induction of free 
radicals, that exhausting SOD and CAT which function as blockers of 
free radical processes. These results are in accordance with [54] 
who recorded a significant decrease in the activities of SOD and CAT 
in brain of rats after aluminium treatment. Alternatively, the 
decreased enzyme activities could be related to a reduced synthesis 
of the enzyme proteins as a result of higher intracellular 
concentrations of aluminium [62]. The data obtained by the present 
study illustrated, further, that administration of ASECP caused a 
significant decrease in the level of LPO in the cerebral cortex, 
cerebellum and hippocampus and elevated the SOD, CAT, GPx and 
GR enzymes activities and GSH levels when compared with 
Aluminium intoxicated rats. Moreover, the plant extracts 
significantly, improved or restored the normal activities of the 
antioxidant enzymes SOD,CAT, GPx, GR and GSH in the cortex, 
cerebellum and hippocampus regions as compared to normal 
control. In fact, the glutathione peroxidase system consists of several 
components, including GSH that effectively remove (hydrogen 
peroxide) and serves as a cofactor for glutathione transferase, which 
helps remove certain drugs and chemicals and other reactive 
molecules from the cells. Moreover, GSH can interact directly with 
certain ROS (hydroxyl radical) to detoxify them, as well as 
performing other critical activities in the cell. So, GSH is probably the 
most important antioxidant present in cells. ASECP had a potent 
increasing effect on GSH content in brain compared to Aluminium 
treated rats. Also, the enzymatic antioxidant defense system 
including SOD and CAT which can decompose superoxide and 
hydrogen peroxide in the cells are the main defense against 
oxidative injuries. The decreased level of these biomolecules may 
lead to increased severity of aluminium toxicities in the brain [64].  

The present study illustrated that aluminium ingestion led to 
significant elevation in alkaline phosphatase (ALP) and acid 
phosphatase (ACP) activities in cerebral cortex, cerebellum and 
hippocampus. Alkaline phosphatase is a membrane-associated 
enzyme, which predominantly concentrated in the vascular 
endothelium in the brain. There is a more or less continuous sheath 
of ALP covering all internal and external surfaces of the central 
nervous system including the spinal cord and thus it may 
functionally be part in the blood-brain barrier mechanism. On the 
other hand, intracellular ACP is largely confined to lysosomes, which 
primarily respond to cellular injury. However, significant 
contribution by aluminium was observed to induce changes in ACP 
activity [49]. The increased activity of ALP and ACP enzymes in the 
brain of animals treated with AlCl3 are in accordance with the 
findings of Ochmanski and Barabasz [11].  Moreover, regarding 
aluminium enhanced serum, cortex and hippocampus ACP activities 
of rats, herein, it was in agreement with the earlier observations 
recorded altered activities of specific lysosomal hydrolytic enzymes 
in neuronal tissues [65] due to aluminium administration. From 
these observations it can be suggested that Al induced an increase in 
ACP activity of the brain may be an indication of lysosomal 
proliferation and increasing catabolic rate. The increased ACP 
activity may result in phosphate accumulation within the lysosomes, 
and this in turn may lead to decreased plasma inorganic phosphate 
concentration [66]. In the present work, administration of ASECP 
caused marked reduction in the elevated activities of ALP and ACP in 
aluminium treated rats. Such decrease could be due to the 

antioxidant properties of CP constituents that protect cellular 
membranes integrity from Al-induced oxidative damage and repair 
the antioxidant system [67], consequently, improve brain structure 
and function against aluminium toxicity. The AST and ALT are 
important enzymes of brain; their activities are related with the 
maintenance of amino acid homeostasis and might be an indicator of 
mitochondrial injury [68]. In our present study, AST & ALT activity 
was found to be increased after aluminium exposure which was 
brought back near to normal after ASECP treatment at 200mg/kg 
body weight. 

Exposure to aluminium may cause marked histophathological 
alterations in the brain tissue which were represented by focal as 
well as diffuse gliosis on in cerebral cortex, odema and inflammatory 
cell infiltration and pericellular odema in cerebral cortex with 
neuronal degeneration. Parallel to our findings, those recorded by 
Bihaqi et al. [69] who found that AlCl

3 
causes histopathological 

lesions in cerebral cortex including neuronal degeneration as 
cytoplasmic vacuolization hemorrhage, ghost cell and gliosis. Our 
histopathological findings are correlated to those of Matyja [70] who 
noticed that exposure to aluminum causes marked histopathological 
alteration in the cerebral cortex including neuronal degeneration, 
perecellular odema and gliosis. According to Brodal [71], the 
functions of certain learning and memory have been associated with 
different areas of the brain like the hippocampus and cerebellum. 
However, aluminium treated group showed marked cell distortion 
groups with high level of degeneration in the cell. ASECP treatment 
showed less sign of degeneration and cell distortion. This supports a 
hypothetical statement by Yokel [72] that Aluminium exposure has 
neuro-degenerating effect resulting in learning deficits and also the 
documentation compiled by Frank [73] who stated that in human 
aluminium inhibits learning. 

Effects of aluminium toxicity on DNA were also investigated. 
Aluminium induction caused an increased DNA damage as indicated 
by the increased fragmentation of DNA and the number of comets 
observed. DNA fragmentation and increase in the appearance of 
comets have also been reported in other studies as a consequence of 
aluminium exposure [74]. Aluminium is known to increase the levels 
of reactive oxygen species [75, 76] which is known to cause damage 
to various macromolecules and also to DNA. Damage to DNA is one 
of the markers and typical characteristic of apoptosis [77] and the 
present study shows that aluminium toxicity can lead to faster 
apoptosis as seen in the micrographs which clearly revealed 
disruption of cells. ASECP, on the other hand revealed 
neuroprotective effects as evidenced by decreased DNA damage 
observed in the pretreatment group. Further, Celastrus paniculatus 
has been shown to possess antioxidative properties and hence may 
decrease the levels of free radicals and ultimately the damage to 
DNA. 

By the results obtained in the present study we conclude that 
Celastrus paniculatus possess neuroprotective properties as 
significant neuroprotection was observed in decreasing level of free 
radicals and increasing the activity of antioxidant enzymes, ATPases 
with improvement in brain architecture. 
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Table 1. Effect of AECP on the activities of Na+/K+ ATPase, Mg2+ATP ase and Ca2+ATP ase on Aluminium induced neurotoxicity in control 
and experimental rats. 

 
ATPases  Group I Group II Group III Group IV Group V 

 
Na+/K+ ATPase 

CC 2.28 ± 0.17 0.98 ± 0.14** 1.77 ± 0.16** 0.90 ± 0.09* 2.17 ± 0.14 
HC 2.27 ± 0.06 1.18 ± 0.05** 2.15 ± 0.04** 1.09 ± 0.06* 2.21 ± 0.04 
CB 2.19 ± 0.09 1.99 ± 0.08** 2.14 ± 0.06** 1.26 ± 0.05* 2.12 ± 0.07 

 
Mg2+ ATPase 

CC 1.51 ± 0.08 0.42 ± 0.07** 0.84 ± 0.07** 0.56 ± 0.09* 1.03 ± 0.06 
HC 1.18 ± 0.05 0.38 ± 0.07** 0.80 ± 0.11** 0.62 ± 0.10* 1.07 ± 0.05 
CB 1.13 ± 0.04 0.44 ± 0.08** 0.79 ± 0.04** 0.51 ± 0.07* 1.03 ± 0.04 

 
Ca2+ ATPase 

CC 1.23 ± 0.07 0.53 ± 0.07** 0.90 ± 0.07** 0.65 ± 0.08* 1.11 ± 0.05 
HC 1.28 ± 0.04 0.47 ± 0.06** 0.91 ± 0.06** 0.68 ± 0.07* 1.10 ± 0.07 
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CB 1.18 ± 0.06 0.48 ± 0.05** 0.89 ± 0.05** 0.71 ± 0.06* 1.12 ± 0.06 

Values are expressed as mean ± S.D (n=6). CC - Cerebral cortex, HC - Hippocampus, CB - Cerebellum. Group I: Control; Group II: AlCl3(4.2mg/kg b.w); 
Group III: AlCl3+ASECP (200mg/kg b.w); Group IV: AlCl3+ASECP (400mg/kg b.w); Group V: ASECP alone 200mg/kg  b.w. **p<0.01; *p<0.05 - Group II 
compared with Group I; Group III and Group IV compared with Group II, ÕÓÉÎÇ ÏÎÅ ×ÁÙ !./6! ×ÉÔÈ 4ÕËÅÙȭÓ  ÐÏÓÔ-hoc test. Na+/K+ ATPase, Mg2+ 

ATPase and Ca2+ ATPase units expressed as µmoles of phosphorous liberated/min/mg protein. 

Table 2. Effect of AECP on the activities of ALP and ACP on Aluminium induced neurotoxicity in control and experimental rats 

  Markers Group I Group II Group III Group IV Group V 
 CC 8.2 ± 0.062 9.2 ± 0.083** 8.6 ± 0.08** 8.9 ± 0.072* 8.2 ± 0.075 
ALT  HC 8.18 ± 0.08 9.1 ± 0.075** 8.2 ± 0.068** 8.9 ± 0.084* 8.1 ± 0.059 

 
CB 8.1 ± 0.073 8.9 ± 0.057** 8.1 ± 0.076** 8.6 ± 0.078* 8.0 ± 0.09 

 
CC 3.1 ± 0.028 5.3 ± 0.022** 3.7 ± 0.019** 4.8 ± 0.023* 3.1 ± 0.027 

AST HC 3.1 ± 0.035 5.3 ± 0.031** 3.8 ± 0.036** 4.8 ± 0.035* 3.2 ± 0.046 

 
CB 3.1 ± 0.041 4.1 ± 0.039** 3.2 ± 0.040** 3.7 ± 0.029* 3.0 ± 0.031 

Values are expressed as mean ± S.D (n=6). AST and ALT units expressed as µg of pyruvate produced/mg tisssue. ALT - Alanine Transaminase; AST - 
Aspartate Transaminase CC - Cerebral cortex, HC - Hippocampus, CB - Cerebellum. Group I: Control; Group II: AlCl3(4.2mg/kg b.w); Group III: 
AlCl3+ASECP (200mg/kg b.w); Group IV: AlCl3+ASECP (400mg/kg b.w); Group V: ASECP alone 200mg/kg  b.w. **p<0.01; *p<0.05 - Group II 
ÃÏÍÐÁÒÅÄ ×ÉÔÈ 'ÒÏÕÐ )Ƞ 'ÒÏÕÐ ))) ÁÎÄ 'ÒÏÕÐ )6 ÃÏÍÐÁÒÅÄ ×ÉÔÈ 'ÒÏÕÐ ))ȟ ÕÓÉÎÇ ÏÎÅ ×ÁÙ !./6! ×ÉÔÈ 4ÕËÅÙȭÓ  post-hoc test. 

Fig 1: Effect of ASECP on the changes in the LPO levels in cerebral cortex, hippocampus and cerebellum of control and experimental rats. 

Values are expressed as mean ± S.D (n=6). LPO- Lipid peroxidation. CC - Cerebral cortex, HC - Hippocampus, CB - Cerebellum. Group I: Control; 
Group II: AlCl3(4.2mg/kg b.w); Group III: AlCl3+ASECP (200mg/kg b.w); Group IV: AlCl3+ASECP (400mg/kg b.w); Group V: ASECP alone 200mg/kg  
b.w. **p<0.01; *p<0.05 - Group II compared with Group I; Group III and GrouÐ )6 ÃÏÍÐÁÒÅÄ ×ÉÔÈ 'ÒÏÕÐ ))ȟ ÕÓÉÎÇ ÏÎÅ ×ÁÙ !./6! ×ÉÔÈ 4ÕËÅÙȭÓ  ÐÏÓÔ-
hoc test. 

 

Fig 2. Effect of ASECP on the alterations in the GSH levels in cerebral cortex, hippocampus and cerebellum of control and experimental 
rats. 

Values are expressed as mean ± S.D (n=6). GSH- Reduced glutathione. CC - Cerebral cortex, HC - Hippocampus, CB - Cerebellum. Group I: Control; 
Group II: AlCl3(4.2mg/kg b.w.); Group III: AlCl3+ASECP (200mg/kg b.w.); Group IV: AlCl3+ASECP (400mg/kg b.w.); Group V: ASECP alone 
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200mg/kg  b.w. **p<0.01; *p<0.05 - Group II compared with Group I; Group III and Group IV compared with Group II, using one way ANOVA with 
4ÕËÅÙȭÓ post- hoctest. 

 

Fig 3 : Effect of ASECP on the activity of GPx in the cerebral cortex, hippocampus and cerebellum of control and experimental rats. 

Values are expressed as mean ± S.D (n=6). GPx- Glutathione peroxidase. CC - Cerebral cortex, HC - Hippocampus, CB - Cerebellum. Group I: Control; 
Group II: AlCl3(4.2mg/kg b.w.); Group III: AlCl3+ASECP (200mg/kg b.w.); Group IV: AlCl3+ASECP (400mg/kg b.w.); Group V: ASECP alone 
200mg/kg  b.w. **p<0.01; *p<0.05 - Group II compared with Group I; Group III and Group IV compared with Group II, using one way ANOVA with 
4ÕËÅÙȭÓ  ÐÏÓÔ-hoc test. 

  

Fig 4 : Effect of ASECP on the activity of GR in the cerebral cortex, hippocampus and cerebellum of control and experimental rats. 

Values are expressed as mean ± S.D (n=6). GR- Glutathione reductase. CC - Cerebral cortex, HC - Hippocampus, CB - Cerebellum. Group I: Control; 
Group II: AlCl3(4.2mg/kg b.w.); Group III: AlCl3+ASECP (200mg/kg b.w.); Group IV: AlCl3+ASECP (400mg/kg b.w.); Group V: ASECP alone 
200mg/kg  b.w. **p<0.01; *p<0.05 - Group II compared with Group I; Group III and Group IV compared with Group II, using one way ANOVA with 
4ÕËÅÙȭÓ  ÐÏÓt-hoc test. 

 

Fig 5 : Effect of ASECP on the activity of SOD in the cerebral cortex, hippocampus and cerebellum of control and experimental rats. 
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Values are expressed as mean ± S.D (n=6). SOD ɀ Superoxide dismutase. CC - Cerebral cortex, HC - Hippocampus, CB - Cerebellum. Group I: Control; 
Group II: AlCl3(4.2mg/kg b.w.); Group III: AlCl3+ASECP (200mg/kg b.w.); Group IV: AlCl3+ASECP (400mg/kg b.w.); Group V: ASECP alone 200mg/kg  
b.w. **p<0.01; *p<0.05 - Group II compared with Group I; Group III and Group IV ÃÏÍÐÁÒÅÄ ×ÉÔÈ 'ÒÏÕÐ ))ȟ ÕÓÉÎÇ ÏÎÅ ×ÁÙ !./6! ×ÉÔÈ 4ÕËÅÙȭÓ  ÐÏÓÔ-
hoc test. 

 
Fig 6 : Effect of ASECP on the activity of CAT in the cerebral cortex, hippocampus and cerebellum of control and experimental rats 

Values are expressed as mean ± S.D (n=6). CAT - Catalase. CC - Cerebral cortex, HC - Hippocampus, CB - Cerebellum. Group I: Control; Group II: 
AlCl3(4.2mg/kg b.w.); Group III: AlCl3+ASECP (200mg/kg b.w.); Group IV: AlCl3+ASECP (400mg/kg b.w.); Group V: ASECP alone 200mg/kg  b.w. 
**p<0.01; *p<0.05 - Group )) ÃÏÍÐÁÒÅÄ ×ÉÔÈ 'ÒÏÕÐ )Ƞ 'ÒÏÕÐ ))) ÁÎÄ 'ÒÏÕÐ )6 ÃÏÍÐÁÒÅÄ ×ÉÔÈ 'ÒÏÕÐ ))ȟ ÕÓÉÎÇ ÏÎÅ ×ÁÙ !./6! ×ÉÔÈ 4ÕËÅÙȭÓ  ÐÏÓÔ-hoc 
test. 

Fig 7 : Effect of alcoholic extract of Celastrus paniculatus in aluminium induced histological changes in the cerebral cortex of control and 
experimental rats 

Fig 7A (Control): Transverse section of cerebral cortex of brain showing normal histo-architecture (H&E, 20x). Fig 7B (Al induced): Transverse 
section of cerebral cortex of brain showing diffused gliosis and pericellular oedema (H&E, 20x). Fig 7C (Al + ASECP 200 mg/kg body weight): 
Transverse section of cerebral cortex of brain showing mild gliosis and mild oedema when treated with 200mg/kg body weight dosage of ASECP 
(H&E, 20x). Fig 7D (Al + ASECP 400 mg/kg body weight): Transverse section of cerebral cortex of brain showing more gliosis and oedema when 
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compared with 200 mg/kg body weight (H&E, 20x). Fig 7E (ASECP 200 mg/kg body weight alone): Transverse section of cerebral cortex of brain 
resembles that of the control (H&E, 20x). 

 

Fig 8 : Effect of ASECP in Aluminium induced  histological changes in the cerebellum of control and experimental rats 

Fig 8A (Control) Transverse section of cerebellum showing normal histo-architecture (H&E 20x). Fig 8B (Al induced) Transverse section of 
cerebellum showing disruption in the Purkinjee cells layer (H&E 20x). Fig 8C (Al + ASECP 200mg/kg b.w) Transverse section of cerebellum showing 
the regeneration of Purkinjee cell layer (H&E 20x). Fig 8D (Al + ASECP 400mg/kg b.w) Transverse section of cerebellum showing slight disruptions 
of Purkinjee cell layer (H&E 20x). Fig 8E (ASECP 200mg/kg b.w alone) Transverse section of cerebellum showing resembling that of control (H&E 
20x). 

 

Fig 9 :  Effect of alcoholic extract of Celastrus paniculatus (ASECP) on aluminium induced histological changes in the hippocampus of 
control and experimental rats 
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Fig 9A (Control) Transverse section of hippocampus of brain shows normal histo architecture (H&E, 20x). Fig 9B (Al induced) Transverse section of 
hippocampus of brain shows high level of pyramidal cell degeneration with marked cell distortion (H&E, 20x). Fig 9C (Al + ASECP 200 mg/kg b.w) 
Transverse section of hippocampus of brain shows slight pyramidal cell degeneration with slight cell distortion (H&E, 20x). Fig 9D (Al + ASECP 400 
mg/kg b.w) Transverse section of hippocampus of brain shows medium level of pyramidal cell degeneration with medium level of cell distortion 
(H&E, 20x). Fig 9E (ASECP 200 mg/kg b.w alone) Transverse section of hippocampus of brain resembling that of control (H&E, 20x). 

 

Fig 10: Agarose gel electrophoresis of genomic DNA extracted 
from rat brain from various treatment groups. (6µg DNA/lane). 

Lane 1 DNA from the control group. Lane 2 DNA from the Al treated 
group. Lane 3 DNA from Al and ASECP (200mg/kg b.w) combined 
treated group. Lane 4 DNA from ASECP alone treated group. Lane 5 
DNA Ladder. 
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