INTRODUCTION

Plants are extensively explored to evaluate their antibacterial activity, antioxidant activity as well as their effect in various metabolic diseases and cancer [1-4]. Oleoresins are composed of resins and essential oils obtained from herbs [5,6] and are rich in antioxidants [7-9]. They are extensively used in pharmaceutical and food industries [10-13]. In this study, thyme oleoresin from *Thymus vulgaris* L. was used for evaluating its effect on cytochrome P450 (CYP3A4).

Cytochrome P450 is an important determinant in drug metabolism as well as in the occurrence of several drug interactions. These drug interactions can result in therapeutic failure, adverse drug reactions, and drug toxicities. Clinically, significant interactions can be prevented by identifying the drug involved as an enzyme substrate, inducer, or inhibitor and avoiding the coadministration of such drugs to get optimum response for the drugs [14].

Cytochrome P450 enzymes are primarily found in liver cells but are also located in cells throughout the body. Cytochrome P450 enzymes are located in endoplasmic reticulum and mitochondria. The enzymes found in mitochondria are generally involved in the synthesis and metabolism of internal substances, while enzymes in the endoplasmic reticulum usually metabolize external substances, primarily medications, and environmental pollutants.

CYP3A4 isozymes are responsible for the extensive first-pass metabolism and inactivation of some drugs which are administered orally [15,16]. It is reported that, among the six isozymes of P450 such as CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP2E1, and CYP3A4, several clinically significant drug-drug interactions have resulted from CYP3A4 isozyme [17,18].

MATERIALS AND METHODS

Plant material

The thyme oleoresin from marigold flowers was obtained from Synthite Industries Private Limited, Kerala, as a gift sample.

Chemicals

CYP450 reagent, 7-Benzylxy-4-trifluoromethylcoumarin (BFC), tris-HCl buffer and potassium phosphate buffer. All the chemicals used were of analytical grade.

Inhibitory effect of cytochrome P450 enzyme activity (CYP3A4)

About 5–100 μg/ml of the thyme oleoresin was used to evaluate the cytochrome P450 isoform CYP3A4 inhibitory effect. The various concentrations of thyme oleoresin, potassium phosphate buffer, CYP450 reagent, and substrate BFC were added to a 96-well plate. The mixtures were preincubated for 20 min at room temperature. The fluorescent intensities of the products were measured by PerkinElmer Enspire fluorescence reader using an excitation and emission wavelength of 405 nm and 460 nm, respectively. Values were expressed as mean ± standard error mean (n=3). IC$_{50}$ was calculated by plotting concentrations of thyme against the corresponding percent inhibition.

RESULTS

In this study, all the tested concentrations of thyme showed inhibitory effect against CYP3A4 in a dose-dependent manner. At 5 μg/ml, it showed a percentage inhibition of 1.82±0.61, whereas 100 μg/ml showed 66.05±0.16. The IC$_{50}$ value for CYP3A4 inhibitory activity was found to be 39.14 μg/ml (Table 1).
Zingiber officinale revealed the most potent inhibitory effect of 56.55±0.77 on CYP3A4. Thyme oleoresin, 66.05±0.16 on CYP3A4, brown algae, 42.76±0.32 on CYP1A2, and Acacia catechu, 31.16±0.20 on CYP3A4 were also found to have inhibitory activity. Several herbs such as Terminalia chebula, Glycyrrhiza glabra L., and Ficus carica were found to have inhibitory activity against CYP3A4. Studies have even correlated the phytoconstituents responsible for cytochrome inhibitory activity. It is reported that Gynura procumbens extract with the highest content of flavonoids showed the highest inhibition of CYP3A4 and CYP1A2 enzyme activities. The ethanol extract of G. procumbens revealed the most potent inhibitory effect towards CYP3A4 and CYP1A2 enzyme while the methanol extract exhibited moderate inhibitory effect.

In the present scenario, a large population is depending on herbal medicine for a variety of health conditions such as common cold, inflammatory conditions, central nervous system diseases, heart disease, and diabetes, but their safety and efficacy data are not adequate [27,28]. Hence, it is always good to explore the possibility of such drug interaction for better clinical efficacy.

CONCLUSION

The findings of this study revealed that thyme oleoresin has the ability to inhibit cytochrome P450 enzyme activity, specifically CYP3A4. Hence, administration of thyme oleoresin together with herbal or modern drugs which follow the same metabolic pathway may result in herb-drug interactions.

ACKNOWLEDGEMENT

The authors thank Synthite Industries Pvt Ltd, Kerala, for providing the extract for the study and the management of Saveetha Dental College for all the support to carry out this short-term project.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest in publishing this article.

AUTHOR’S CONTRIBUTION

All the authors have equally contributed towards the compilation of this research article.

REFERENCES


