Shorea robusta is regarded as an important medicine in Ayurveda. *S. robusta* Gaertn. f. belongs to family Dipterocarpaceae, and traditionally, it is used to treat wounds, ulcers, leprosy, cough, gonorrhea, earache, and headache and many more. The use of different parts of this plant such as leaves, resin, and bark as a medicament for the treatment of various conditions is well documented in literature. It is the rich source of flavonoids, saponins, steroids, tannins, phenols, etc. mainly triterpenoids, which play the prominent role for their therapeutic potential in the drug. These compounds are believed to be responsible for the pharmacological activities of plant extract. The present review clarified the main active ingredients and pharmacological effects of *S. robusta* as a promising plant as a result of effectiveness and safety. Further studies should be carried out on this plant to discover the unrevealed part of it which may serve for the welfare of humankind.

Keywords: *Shorea robusta*, Tannins, Phenols, Wound healing, Antidiabetic.

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i9.26978

INTRODUCTION

Plants have been an important source of medicine with qualities for thousands of years. Plants are used medicinally in different countries, and they are the source of many potent and powerful drugs. Mainly on traditional remedies such as herbs for their history, they have been used popular folk medicine [1,2]. *Shorea robusta* is regarded as an important medicine in Ayurveda. *S. robusta* Gaertn. f belongs to family Dipterocarpaceae, and traditionally, it is used to treat wounds, ulcers, leprosy, cough, gonorrhea, earache, and headache and many more. Different parts of the plant are traditionally used for the treatment of diverse purpose [3,4]. In Ayurveda, the leaves are used as anthelmintic, anti-inflammatory, antinociceptive, hyperlipidemic, antioxidant, and aleuritic. The leaves are used to treat wounds, ulcers, itching, leprosy, gonorrhea, cough, earache, and headache. The powdered stem bark or bark paste is applied to stop bleeding and promote healing of cuts [5,6]. In the Unani system of medicine, the resin is used to treat menorrhagia, enlargement of spleen, relieving eye irritations. The resin is used as antimicrobial, analgesic, and antiseptic. Its resin with honey or sugar is given in dysentery and also given in gonorrhea and for weak digestion. The oleoresin exuded from the cut bark has astringent and detergent properties [7,8]. The bark is used to treat diabetes, diarrhoea, dysentery, wounds, and ulcers. Its bark decoction is used as drops in ear problems. Besides, its fruits are used to treat diarrhoea [9-12]. This review was mainly cited the information to highlight the modern and traditional therapeutically pharmacological profile of *S. robusta* plant belonging to family Dipterocarpaceae, which may serve as a source for further studies.

PLANT PROFILE [13-17]

- **Botanical name:** *S. robusta*.
- **Family:** Dipterocarpaceae.
- **Vernacular names:** Guggilam, Ashvakarna, Chiraparna, Sal, Sala, Sarja, Sal tree, Common Sal, Indian Dammer, Dhuna, Damar, Jall, Sal, Salwa, and Shal.
- **Parts used:** Resin, leaves, bark, and fruit (Fig. 1).
- **Chemical constituents:** Phytochemical screening reveals the presence of flavonoids, saponins, steroids, tannins, phenols, etc., mainly triterpenoids which plays the prominent role for their therapeutic potential in the drug.

Traditional uses of plant

The resin obtained from the plant is considered as an astringent and a detergent and is used with honey or sugar in dysentery and bleeding piles and also for fumigating the rooms of ill people. It is also given in gonorrhea and for weak digestion. Its bark decoction is used as drops for ear problems and the fruits for diarrhoea. India dammar resin *Shorea robusta*. It exudes from the fissure made in the bark of the tree in the form of a gum resin. It is a useful drug in European pharmacopoeia. It consists of two kinds, namely white and red, and it is used for fumigating like frankincense and is soluble in alcohol. Mixed with sulphur, it is used as an ointment for wound source etc. And mixed with wax, it is used as plasters for wounds. It is bitter, pungent and nauseating. Traditional physicians prescribe it for venereal complaints as gonorrhea, gout, etc. Mixed with boiled milk it is a useful remedy in cough, piles, bronchitis, and leucorrhoea. It is capable of absorbing all morbid fluid from the system. The resin is also used on increase in several Hindu households, temples, and sick rooms. The powdered stem bark or bark paste is applied to stop bleeding and promote healing of cuts among the tribal inhabitants of southern Bihar and the Kondh of southwestern Orissa [18,19].

PHARMACOLOGICAL ACTIVITY

Wound healing activity

Khan et al. investigated the wound healing activity of *S. robusta* resin extracts and essential oil in rats. In this study, various extracts of plant resin were incorporated in soft yellow paraffin (10% w/w) and applied once daily on incision and excision wounds of Wistar rats. Framycetin ointment (1.0% w/w) was also applied to the standard group. Authors have been revealed in this study that the extract treatment group wound was 53% higher than that of control animals. Protein and hydroxyproline contents were higher extract groups (2018 and 3.5% w/w) as compared to control group [20], and other investigator also reported wound healing activity of some herbal plants containing flavonoid and phenol phytoconstituents [21-23]. Sahasrabudhe et al. reported the healing of second-degree burns by resin extract of *S. robusta* (SRE) using first-degree, third-degree burns and electrical burn models. Raul ointment found to be a suitable alternative to silver sulfadiazine cream for the treatment of second-degree burns [24]. Mukherjee et al. have been reported that the topical application of the extract of young leaves of *S. robusta* and its isolated compounds such as...
ursolic acid and bergenin promote wound healing activity in excision incision and dead space wound models in rats, probably by inhibiting or modulating some mediators and inflammatory cytokines such as TNF-α and PGE2. The histology examination of this study has been revealed that the promoting of tissue collagen content like hydroxyproline more founded in the treatment group of animals [25] and some other investigation were claimed to beneficial wound healing activity of these plant phytoconstituents [26-28].

Wani et al. carried out the study to investigate the wound healing activity of ethanolic extract of resin SRE sample. The study of this research was used incision and excision wound healing animal model. Investigators were reported that the ethanolic SRE (10 and 30 % w/w applied locally in excised and incised wounds) produced a dose-dependent acceleration in wound contraction and increased hydroxyproline content and tensile strength of wounds in rats [29,30]. Datta et al. have been prepared five topical formulations using cow ghee, flax seed oil, Phyllanthus emblica fruits, S. robusta resin, and Yashoda bhasma as their study materials. Investigators have been reported that the group treated with the formulations containing Y. bhasma along with S. robusta resin and flax seed oil showed significantly better wound contraction (p<0.01), higher collagen content (p<0.05), and better skin breaking strength (p<0.01) as compared to control group [31]. Wound healing effect of herbal plant is beneficial for over the synthetic product [32-36].

Antimicrobial activity

Vashisth et al. have reported the antioxidant and antibacterial properties of the methanolic extract of the resin of S. robusta. The methanol extract of the resin was tested for antioxidant activity using scavenging activity of 1,1-diphenyl-2-picrylhydrazil (DPPH) radical method, reducing power by FeCl₃ and antibacterial activity against Gram-positive and Gram-negative bacteria using disc diffusion method. The study has been revealed that the half inhibition concentration of resin extracts of S. robusta and ascorbic acid was 35.60 μg/ml and 31.91 μg/ml, respectively. The resin extract exhibited a significant dose-dependent inhibition of DPPH activity. Investigators have been also proved of S. robusta antibacterial activity which was observed against Gram-positive and Gram-negative bacteria in dose dependent manner [37]. Banerjee et al. carried out the study that focuses on phytochemical analysis and antimicrobial effects of lal dhuna, a natural resin secreted from S. robusta (Saf). The methanolic and ethanolic extracts of lal dhuna were prepared by distillation method. Antimicrobial activity was tested in Escherichia coli, Salmonella typhi, Pseudomonas sp. and Staphylococcus aureus culture. This study has been concluded that the potent antibacterial consisting has both the extracts through procuring zone of inhibition (ZOI) on culture media which was nearly equivalent to the antibiotics applied [38]. Adlakha et al. have been reported the antimicrobial activity of S. robusta by agar well diffusion method against some pathogenic bacteria. The extract possesses significant antibacterial activity [39].

Murthy et al. reported the antimicrobial activity of the aqueous, methanol, ethanol, petroluem, and benzene extract of oleoresin of S. robusta by disc diffusion method. Aqueous extracts of S. robusta exhibit significant activity against Bacillus coagulans, E. coli, and Bacillus cereus, moderate inhibition on S. typhi and Bacillus subtilis, and less activity against Proteus vulgaris and Pseudomonas fluorescense. However, ethanol extracts also exhibited significant activity against S. aureus, S. epidermidis, and E. coli and moderate inhibition on Candida albicans and B. coagulans. Investigators have been reported that the methanol extract has shown more significant activity [40]. Duddikuri et al. reported the antimicrobial activity of aqueous extract of floral parts of S. robusta against the Gram-positive bacteria, namely S. aureus and B. subtilis, and Gram-negative bacteria, namely Klebsiella pneumoniae and Serratia marcescens by well diffusion method. Aqueous extract of the plant has shown a significant inhibitory activity on different bacterial species tested against penicillin as standard antibacterial agent [41]. Gaurea et al. also investigated the antimicrobial effect of resin of some herbal plants. They have been reported the resins of Boswellia serrata, C. mukul, and Gardenia resinifera exhibiting activity against Gram-positive bacteria, comparable to standard antibiotic amoxicillin, but they did not have the activity against Gram-negative bacteria. In this investigation, the maximum ZOI was found against B. cereus by B. serrata resin sample prepared in ethanol [42]. Some other investigation have been also confirmed the antimicrobial activity of resin containing of plant constituents [43-46].

Antilucre activity

Vimala et al. reported the antiulcerogenic activity of S. robusta. The extract of S. robusta was administered at the doses of 150 and 300 mg/kg orally in rats against ethanol and pylorus ligation-induced gastric ulcer. The extract significantly increases the gastroprotective activity as compared to control [47]. Santoskumar et al. investigated the antiulcer activity of S. robusta Gaertn. Investigators have concluded that the treatment group has more antiulcerogenic effects when compared to the reference drug omeprazole. The study results have been suggested that S. robusta resin possess significant gastroprotective activity [48]. Other scientific investigations have been proved that the plant contains polyphenols and flavonoids revealed possesses the protective effective as gastric ulcer treatment [49-53].

Antioxidant activity

Mathavi et al. have been reported that the ethanolic SRE leaves have shown in vitro antioxidant activity. The ethanolic extract was screened for in vitro antioxidant activity by oxygen radical scavenging such as DPPH, total antioxidant assay, superoxide metal chelation and iron reducing power activity at different concentration throughout the studies leaves extract showed marked antioxidant activity. The antioxidant activity was found to be concentration dependent and may be attributed to the presence of bioflavonoids content in the leaves of S. robusta [54]. Ramasamy et al. evaluated the antioxidant activity of the acetone and methanol extracts of the stem bark of the plant, Shorea roxburghii. In this study, the total phenolic content and antioxidant activity of the extracts were determined by DPPH, radical scavenging, ferric ion reducing power, hydroxy radical, and ABTS. Both acetone and methanol extracts of S. roxburghii stem bark were found to be a potent antioxidant. The current study provides a scientific support for the high antioxidant activity of this plant, and thus, it may find potential applications in the treatment of the diseases caused by free radical [55]. Several studies confirmed that the plant containing flavonoids, phenol, and polyphenols are responsible for free radical scavenging activity of herbal drugs and it is may be responsible for antioxidant activity of this plant resin [56-60].

Immunomodulatory activity

Adlakha et al. have been reported the antinociceptive, antiobesity, and immunomodulatory activity of S. robusta bark using formalin-induced paw licking model. The bark extract administered rat models at 300 mg/kg/day intraperitoneal route. The study results have been shown a significant effect in stimulating immunomodulatory response and significant antinociceptive response [39]. Kalaiselvan et al. reported the immunomodulatory activities of S. robusta. Sheep red blood cells (5×10⁹ cells/ml) were used for immunizing the animals that belong to immunized groups. This study was performed with a set of immunomodulation such as the humoral antibody response (hemaglutination antibody tkters and immunoglobulins), cell-mediated immune response (delayed type hypersensitivity and phagocytosis).
Anti-inflammatory and analgesic activity

Nainwal et al. investigated the in vitro anti-inflammatory activity of leaf SRE using heat-induced hemolytic method. The SRE contains good amount of tannins, flavonoids, and saponins; these possess good activity against inflammation [67]. Debprasad et al. have been reported the anti-inflammatory and analgesic activities and the possible mechanism of action of tender leaf extracts of *S. robusta*. Analgesic was induced by the writhing and tail flick methods, while the anti-inflammatory activity was evaluated in carrageenan- and dextran-induced paw edema and cotton pellet-induced granuloma model. The authors promoted have results revealed that both aqueous and methanol extract (400mg/kg) caused significant reduction of writhing and tail flick, paw edema, granuloma tissue formation (p<0.01), vascular permeability, and membrane stablization. Thus, the present study validated the scientific rationale of ethnomedicinal use of *S. robusta* and unravels its mechanism of action [68]. Jyoti et al. have been reported the antiinflammatory and anti-inflammatory activity of methanolic extract of leaves of *S. robusta*. The extract produced a dose-dependent inhibition of carrageenan-induced paw edema in rats. At the same doses, antinociceptive effect was also observed with hot plate devemaintain that 550°C, acetic acid induced writhing, formaline induced-paw-licking, tail clip and tail flick models in mice the result of the present study confirm the use of *Shorea robusta* traditionally for the treatment of pain full inflammatory conditions [69,70].

Anti-obesity activity

Sudha et al. investigated the ethanolic SRE resin for analgesic activity by making use of different central and peripheral pain models. The extract produced significant central and peripheral analgesic effects as is evident from increase in reaction time in hot plate and tail flick tests, inhibition in writhing counts in acetic acid-induced writhing test, inhibition of licking time in formalin-induced hind paw licking, increased pain threshold in paw withdrawal latency in carrageenan-induced hyperalgesia, and increased paw withdrawal threshold in post-surgical pain [71]. Wani et al. also evaluated the antipyretic activity of *S. robusta* leaves using breyer’s yeast-induced pyrexia in rats. Significant reduction in pyrexia was observed at all dose levels of *S. robusta* extract [72].

REFERENCES

72. Wani TA, Chandrashekhara HH, Kumar D, Prasad R, Sardar KK,

