INTRODUCTION

Thyroid disorders are seen frequently during pregnancy and briefly following labor. The second most frequent endocrine disorder affecting women throughout reproductive age is thyroid disease [1,2]. The chemical structure of human chorionic gonadotropin (HCG) is similar to that of thyroid-stimulating hormone (TSH), thus HCG is able to both stimulate the thyroid gland and increase in thyroid hormone level [3]. The usual presentation of thyroid abnormality in women during pregnancy is high TSH and low normal or sometimes even low thyroxine during the first trimester of pregnancy [4]. Women hypothyroidism has been accompanied by high risk of reduced birth weight, altered neuropsychological maturation, fetal distress, and intrauterine death [5-7]. It has been suggested that women with clinical and subclinical hypothyroidism (SCH) must be given thyroxine throughout pregnancy to keep serum TSH within the desired reference range [4].

Uterine blood flow is increased up to 20-fold during normal pregnancy, and this has been regarded as a normal physiological response to maintain the growing fetus [8]. Nowadays, a color Doppler ultrasound technique is used to assess the uterine and ovarian blood flow depending on two indexes: the “pulsatile index (PI)” and resistance index (RI) that are negatively proportional to impedance to blood flow and this technique is regarded as an efficient way to evaluate both ovarian and uterine blood flow inadequacy [9-11]. Significant changes in serum lipids profile have accompanied SCH. Many published articles documented the high serum low-density lipoprotein (LDL), triglycerides (TGs), and total cholesterol (TC) in individuals suffering from hypothyroidism [12-14]. It has been shown that during pregnancy, TC, LDL, high-density lipoprotein (HDL), and TGs get rise [15]. Hypercholesterolemia that accompanies pregnancy is attributable also to alterations in liver metabolism, adipose metabolism, and sex steroid hormones [16]. Women with hyperlipidemia are associated with adverse fetal and maternal outcome and increased risk of premature labor and intrauterine death [17-19].

Hence, the aim of the present study was to evaluate the effect of thyroxine administration to women with SCH and who had a history of recurrent intrauterine death through uterine and ovarian ultrasound blood flow estimation and serum lipids profile assessment before and after 2 months of treatment.

PATIENTS AND METHODS

The current study included 80 women with SCH who had a history of recurrent intrauterine death. Those women were chosen from the cohort of pregnant ladies that routinely seek medical advice. For each woman, estimation of serum thyroid-stimulating hormone (TSH), serum lipids profile (LDL, TC, and TG), and also uterine and ovarian pulsatile index (PI) and resistance index (RI) using color Doppler ultrasound, was done at the beginning of study and then repeated following 2 months during which women were given oral thyroxine supplementation (50 μg/d). The study was carried out in Al-Diwaniyah Maternity and Child Teaching Hospital in Al-Diwaniyah province, Iraq, and extended from September 2016 to January 2018.

RESULTS

Mean serum TSH, LDL, TG, and TC were significantly reduced (p<0.05). Mean follicular phase ovarian PI and RI and uterine RI were significantly reduced (p<0.05). In addition, mean late follicular phase ovarian PI and RI and uterine RI were significantly reduced (p<0.05).

CONCLUSION

Thyroxine administration to women with SCH significantly decreases serum lipids and increases uterine and ovarian blood flow by mechanism involving reduction in arterial RI and PI.

Key words: Subclinical hypothyroidism, Thyroxine, Uterine, Ovarian blood flow.
standard deviation. Paired t-test was used to compare mean differences in serum TSH, LDL, TG, TC, ovarian, and uterine PI and RI. The level of statistical significance was considered at $p \leq 0.05$.

RESULTS

Mean serum TSH was significantly reduced from 7.35±0.97 to 3.81±0.52 mIU/L ($p<0.05$). Mean serum LDL was significantly reduced from 175.45±8.22 to 123.05±7.65 mg/dL ($p<0.05$). Mean serum TG was significantly reduced from 296.50±46.23 to 146.60±12.25 mg/dl ($p<0.05$). Mean serum TC was significantly reduced from 261.10±17.40 to 174.60±12.87 mg/dL ($p<0.05$), as shown in Fig. 1.

Mean early follicular phase ovarian PI was significantly reduced from 2.31±0.14 to 1.84±0.15 ($p<0.05$), as shown in Fig. 2.

Mean late follicular phase ovarian PI was significantly reduced from 0.74±0.03 to 0.67±0.02 ($p<0.05$). Mean early follicular phase ovarian PI was significantly reduced from 2.51±0.17 to 2.10±0.18 ($p<0.05$). Mean early follicular phase uterine PI was significantly reduced from 2.63±0.13 to 2.02±0.08 ($p<0.05$), as shown in Fig. 2.

DISCUSSION

The present study showed that administration of thyroxine to women with SCH caused significant improvement in both ovarian and uterine blood flow as evident by significant lower mean PI and mean RI. In addition, the current study showed significant improvement in serum lipids profile of the women following thyroxin treatment.

The most frequent pathological hormone insufficiency is primary hypothyroidism, and the rate of subclinical and clinical disease is 4.3% and 0.3%, respectively [20]. Inadequacy of thyroid hormones results in a number of significant end-organ outcomes that also include reproductive system defects of the women. Prolonged hypothyroid status can alter gonadotropin production by raising serum prolactin (PRL) concentrations [21]. Clinical features, including impaired fertility and menstrual irregularities, are the consequence of "anovulation and/or luteal phase defect" [22].

Most women with hypothyroidism will develop amenorrhea. Reproductive disorders that accompany hypothyroidism include wide spectrum of abnormalities ranging from altered sexual maturation, irregular menstruation, and subfertility [23]. The effect of hypothyroidism on menstruation has been observed since the 1950s and is associated with alterations in cycle duration and blood amount [23]. SCH has been seen to be correlated with occult menorrhagia that becomes symptomatic later with the progression of thyroid illness [24]. Hypothyroidism causes an elevation in the levels of thyroid-releasing hormone which, in turn, stimulates secretion of TSH and PRL and PRL inhibits the synthesis and secretion of gonadotrophins [25]. It was observed that thyroid receptors are also found in ovarian surface epithelium and affect ovarian follicles, in addition to their existence in granulosa cells of ovarian follicles [26]. It has been seen that thyroxine controls a number of biological functions including cellular oxygen consumption, growth, embryonic development, cellular metabolism, and tissue maturation and differentiation [27].

Serum concentrations of LH and FSH are profoundly low in women with clinically symptomatic hypothyroidism when estimated between day 2 and 5 of the menstrual cycle [28]. Studies have demonstrated that serum estradiol was also reduced significantly in the hypothyroid state when compared to the control [29]. Studies have demonstrated a positive correlation in between TSH and PRL in hypothyroid women [30]. In many studies, it was shown that T4 administration in hypothyroidism normalizes PRL and LH levels, increases folliculogenesis and estradiol secretion, reverses menstrual abnormalities, and increases spontaneous fertility [31].

Uterine blood flow alternates along with alterations in the steroid levels throughout the length of the menstrual cycle and also during pregnancy. At time of follicular phase of the cycle that is typified by an elevated "estrogen-to-progesterone ratio," uterine blood flow is low. On the other hand, at time of pregnancy that is characterized by greater estrogen and progesterone, uterine blood flow will increase and the increment is rising with advancing pregnancy. Because uterine blood flow patterns change along with the steroid hormone profile, many studies are focused on the ways by which these blood vascular responses are induced. Estradiol-17β (E2β) is a strong blood vessel dilator agent that has been utilized to evaluate ovarian steroid hormone actions on blood flow parameters [32].

Thyroid hormones play an important role in synthesis, mobilization, and metabolism of lipids [33]. Therefore, hypothyroidism is a major

![Fig. 1: Mean serum thyroid-stimulating hormone and lipids profile of pregnant women before and after thyroxin treatment](Image)
cause of secondary dyslipidemia. Investigations report elevated levels of TC and LDL in patients with overt hypothyroidism. Those patients may also present elevated to normal levels of TG and HDL [34,35]. In SCH, there is an elevation in TSH with normal levels of thyroxine (T4) and tri-iodothyronine (T3) [14,36].

In conclusion, thyroxine administration to women with SCH significantly increases uterine and ovarian blood flow and decreases serum lipids.

AUTHOR’S CONTRIBUTION
Sinaa Abdul Amir Kadhim was provided the design, intellectual content, innovations, and protocol for conducting the study, majorly sample collection, and minor role in follow up of patients.

Shaimaa Abdul Ameer Kadhum has majorly performed ultrasound and Doppler study for the patients.

Ali Jawad Hamza has majorly follow-up of the patients during treatment, analysis of the data, and sincerely authored the article.

CONFLICTS OF INTEREST
The authors declare that there are no conflicts of interest regarding publication of this article.

REFERENCES

