INTRODUCTION

The evaluation of the scientific efficacy of Ayurvedic and Siddha drugs has become an urgent necessity for their acceptance and promotion. Although these systems are in vogue since ages, the scientific validation with modern parameters will prove their efficacy and help in resurrecting these age-old systems of medicine. This is all the more required due to the development of multidrug-resistant pathogens and increase in the incidence of dreadful diseases such as cancer, malaria, and AIDS, with which the modern medicine is unable to cope up with. It will be wise to develop a safe, cost-effective medicine which could have less or no side effects. For the past two decades, increasing focus is being given by government and private players in this direction [1-30]. Ministry of AYUSH, Government of India, and other such organizations should come forth to develop techniques, protocols, and methods to establish the Ayurvedic and Siddha medicines at the global level.

The present study is one step in this direction. The study deals with the antioxidant study of one Ayurvedic medicine Aswagandharishtam by three different methods, namely reducing power, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays.

METHODS

Aswagandharishtam, which is a liquid medicine, was taken as such at various concentrations for all the three assays.

RESULTS

The results show that Aswagandharishtam has good antioxidant potential when compared with ascorbic acid as standard. The IC50 values of reducing power assay were 250.142, that of DPPH were 103.607, and of ABTS assay were 197.79 as compared with that of ascorbic acid being 19.59.

CONCLUSION

All the three assays indicated that Aswagandharishtam showed very good antioxidant results.

Keywords: Aswagandharishtam, 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, 2, 2-Diphenyl-1-picrylhydrazyl, Vata, Antioxidant, Epilepsy, Ascorbic acid.

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i11.27593

ABSTRACT

Objective: The present study deals with the antioxidant study of one Ayurvedic medicine Aswagandharishtam by three different methods, namely reducing power, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays.

Methods: Aswagandharishtam, which is a liquid medicine, was taken as such at various concentrations for all the three assays.

Results: The results show that Aswagandharishtam has good antioxidant potential when compared with ascorbic acid as standard. The IC50 values of reducing power assay were 250.142, that of DPPH were 103.607, and of ABTS assay were 197.79 as compared with that of ascorbic acid being 19.59.

Conclusion: All the three assays indicated that Aswagandharishtam showed very good antioxidant results.

Keywords: Aswagandharishtam, 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, 2, 2-Diphenyl-1-picrylhydrazyl, Vata, Antioxidant, Epilepsy, Ascorbic acid.
The drug was subjected to antioxidant assays, namely reducing power, DPPH, and ABTS assays.

Reducing power assay [31]
Various concentrations of the Aswagandharishtam in 1 ml of 10% DMSO solution was mixed with phosphate buffer (2.5 ml) and potassium ferricyanide (2.5 ml) and incubated at 50°C for 20 min. Aliquots of trichloroacetic acid (2.5 ml) were added to the mixture, which was then centrifuged at 3000 rpm for 10 min. The upper layer of solution (2.5 ml) was mixed with distilled water (2.5 ml) and a freshly prepared ferric chloride solution (0.5 ml). The absorbance was measured at 700 nm. A blank was prepared without adding sample or standard. Ascorbic acid was used at various concentrations as a reference standard. Increased absorbance of the reaction mixture indicates an increase in reducing power.

\[
\% \text{ inhibition} = \frac{[\text{Aswagandharishtam-Control}]}{\text{Aswagandharishtam}} \times 100
\]

DPPH radical scavenging assay [32]
The method described by Oyedemi and Afolayan et al. (2011) was used to determine the DPPH scavenging activity of the Aswagandharishtam. The solution of 0.135 mM DPPH was prepared in methanol. Different concentrations of the medicine (0.1 ml) were mixed with 1.9 ml of DPPH solution. The reaction mixture was vortexed thoroughly and left in the dark at room temperature for 30 min. The absorbance of the mixture was measured at 517 nm. Ascoboric acid was used as a standard drug. The ability of the medicine to scavenge DPPH radical was calculated from the following formula:

\[
\% \text{ DPPH inhibition} = \frac{[\text{OD of Control} - \text{OD of Aswagandharishtam}]}{\text{OD of Control}} \times 100
\]

ABTS radical scavenging assay [33]
A stock solution of ABTS radical cation was prepared by dissolving ABTS (7 mM, 25 ml in deionized water) with potassium persulfate (K, S O) (140 mM, 440 µl). The mixture was left to stand in the dark at room temperature for 15-16 h (the time required for the formation of the radical) before use. For the evaluation of ABTS radical scavenging activity, the working solution was prepared by the previous solution and diluting it in ethanol to obtain the absorbency of 0.700±0.02 at 734 nm. The solution of 0.135 mM DPPH was prepared in methanol. Different concentrations of the medicine (0.1 ml) were mixed with 1.9 ml of DPPH solution. The reaction mixture was vortexed thoroughly and left in the dark at room temperature for 30 min. The absorbance of the mixture was measured at 517 nm. Ascorbic acid was used as a standard to compare the antioxidant properties as seen by its IC value as compared with that of ascorbic acid being shown in Fig. 1.

% inhibition = [OD of Control - OD of Aswagandharishtam] / OD of Control × 100

Table 1 shows the reducing power assay results. Table 2 shows the DPPH assay results and Table 3 shows the ABTS assay results. Ascorbic acid was used as a standard to compare the antioxidant activities of different assays as shown in Table 4. The comparative percentage inhibition of the three assays as compared to ascorbic acid is summarized in Fig. 1. The comparative IC value (Fig. 2) indicate that Aswagandharishtam exhibits excellent antioxidant capacity for all the three assays conducted and this could be a very important factor for the medicinal role of Aswagandharishtam.

Reducing power assay
The reducing power assay of Aswagandharishtam indicated good antioxidant properties as seen by its IC value as compared with that of ascorbic acid being shown in Fig. 1.

DPPH assay
The DPPH assay of Aswagandharishtam also indicated good antioxidant properties as seen by its IC value as compared with that of ascorbic acid being shown in Fig. 1.

ABTS assay
The ABTS assay of Aswagandharishtam also indicated good antioxidant properties as seen by its IC value as compared with that of ascorbic acid being shown in Fig. 1.

Ascorbic acid
Ascorbic acid was used as a standard to compare the antioxidant activities of different assays as shown in Table 4.

DISCUSSION
The present work was in continuation of our studies on the gas chromatography-mass spectrometry (GC-MS) and antioxidant profiles of various Ayurvedic medicines. Two more Aristaas, studied by us, namely Ashokarishta and Partharishta, also indicated strong antioxidant properties as seen by the biomolecules present as shown in the GC-MS analysis [34-36].

The data obtained from the GC-MS analysis of the following medicine, Ajawagandhadi lehyam, in which the major component is Ashwagandha (Winter cherry/Indian Ginseng (root) - W. somnifera). Withania is reported to medicinal values such as immunomodulator, aphrodisiac, antioxidant, anti-inflammatory, anti-stress, antioxidant, sleep-inducing, effective in memory-related conditions, insomnia, hemopoietic effect on CNS, and cardiopulmonary systems [37]. The phytoconstituents present in this plant such as Withanoside IV or VI produced dendritic outgrowth in normal cortical neurons of isolated rat cells, whereas axonal outgrowth was observed in the treatment with withanolide A in normal cortical neurons.
neurons [38]. The crude extract of the plant containing the steroidal substances sitoindosides VII-X and withaferin A augmented learning acquisition and memory in both young and old rats [39].

The present medicine in study, i.e. Aswagandharistam also contains Aswagandha as a major component. Among the constituents of Aswagandharishtam, some have been reported to have strong antioxidant potentials such as C. tuberosum (Baker), R. cordifolia, T. chebula, B. aistata, G. glabra, P. tuberose, Operculina turpethum, H. indicus, P. santalinus, Z. officinalis, P. longum, P. nigrum, C. tamala, and M. ferrea L [40-56]. Thus, the antioxidant properties as shown in this present work augur well with similar activities of the majority of its constituents.

CONCLUSION

From the above discussion, it is clear that aristaas, in general, have antioxidant properties and Aswgandharishtam shows very good antioxidant activities with respect to all the three assays, namely reducing assay, DPPH assay, and ABTS assay, proving its efficacy as a potent medicine.

ACKNOWLEDGMENTS

The authors wish to acknowledge with gratitude to all those who have directly or indirectly helped in the present study.

AUTHORS’ CONTRIBUTIONS

The planning and guidance for this work was done by M.R.K. Rao and K. Prabhu. The experiment was conducted by M. Kotteswari and Siva

Table 2: The DPPH assay results of Aswagandharishtam

<table>
<thead>
<tr>
<th>S. No</th>
<th>Concentration (µg/ml)</th>
<th>% Absorbance</th>
<th>Inhibition</th>
<th>IC<sub>50</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>0.737</td>
<td>17.65</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0.681</td>
<td>23.91</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>0.638</td>
<td>28.72</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>0.533</td>
<td>40.45</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0.482</td>
<td>46.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>0.895</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Mean±SD 31.37±11.74214333 103.607

DPPH: 2,2-Diphenyl-1-picrylhydrazyl, SD: Standard deviation

Table 3: The ABTS assay results of Aswagandharishtam

<table>
<thead>
<tr>
<th>S. No</th>
<th>Concentration (µg/ml)</th>
<th>% Absorbance</th>
<th>Inhibition</th>
<th>IC<sub>50</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>0.579</td>
<td>12.27</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0.498</td>
<td>24.55</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>0.485</td>
<td>26.52</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>0.461</td>
<td>30.15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0.443</td>
<td>32.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>0.666</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Mean±SD 25.274±7.949957862 197.79

ABTS: 2,2’-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid. SD: Standard deviation

Table 4: The ascorbic acid antioxidant profile

<table>
<thead>
<tr>
<th>S. No</th>
<th>Concentration (µg/ml)</th>
<th>% Absorbance</th>
<th>Inhibition</th>
<th>IC<sub>50</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>0.676</td>
<td>24.47</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0.474</td>
<td>47.04</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>0.33</td>
<td>63.13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>0.212</td>
<td>76.31</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0.179</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>0.895</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Mean±SD 58.19±22.85702846 19.59

SD: Standard deviation

![Fig. 1: The comparative inhibition percentages of all the three assays as compared to ascorbic acid (standard)](image1)

![Fig. 2: The IC₅₀ value comparison of all the three assays as compared to ascorbic acid (standard)](image2)
CONFLICTS OF INTEREST

The authors declare that no conflict of interest exists among them.

REFERENCES

