PHYTIC ACID (MYO-INOSITOL HEXAPHOSPHATE)- A PROMISING PHARMACEUTICAL AGENT: A REVIEW

RADHAKRISHNAN NARAYANASWAMY**, NORHAIZAN MOHD ESA1,2,3

1Bio Incubator and Lab, Vel Tech Technology Incubator, Vel Tech Rangarajan Dr. Sagunthala R and D Institute of Science and Technology, 400 Feet Outer Ring Road, Avadi, Chennai, Tamil Nadu, India. 2Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia. 3Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia. Email: nrkishnan@gmail.com

ABSTRACT

Phytic acid (myo-inositol hexaphosphate) has gained much attention among researchers for its therapeutic value. This review focuses on pharmacological activities of phytic acid, which have been demonstrated by pre-clinical studies. Anti-carcinogenic, antioxidant, anti-diabetic, hypolipidemic, anti-angiogenic, and immunomodulation are the most extensively studied pharmacological activities of phytic acid. In addition to these, phytic acid and its derivatives also possess enzyme inhibitory activities against few key enzymes such as 5-alpha reductase, aldose reductase, cyclooxygenase, lipase, matrix metalloproteinase-2 & 9, pepsin, polyphenol oxidase, protease, β-secretase, tyrosinase, and xanthine oxidase were emphasized. The profound pharmacological activities of phytic acid have proven to be a good therapeutic agent and could be employed in preventing as well as treating such diseases.

Keywords: Phytic acid (myo-inositol hexaphosphate), Anticarcinogenic, Hypoallergenic, 5-alpha reductase (type-2), β-Secretase (type-1).

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i11.27843

INTRODUCTION

Phytic acid is a unique negatively charged molecule in a wide pH range and having 12 replaceable protons in it [8]. These characteristics chemical natures allow the formation of metal complexes with polyvalent metals especially with divalent and trivalent [9]. Phytates are the only enzymes, which capable of hydrolyzing phytic acid into myo-inositol and inositol phosphates [1]. Phytic acid has been well known as anti-nutrient agent in the past. Recently, phytic acid has been extensively studied due to its numerous biological activities; therefore, it is worthwhile to review recent findings on phytic acid and its pharmacological activities. The present review, we describe the recent therapeutic potential of phytic acid as a promising pharmaceutical agent.

PHARMACOLOGICAL ACTIVITIES OF PHYTIC ACID

Few important pharmacological activities of phytic acid have been shown in Fig. 1 wherein, all these publications exemplify the numerous pharmaceutical studies and deliberately confirmed the potential therapeutic value of the phytic acid against various diseases. Furthermore, antineoplastic/anticarcinogenic activity of phytic acid has more number of studies/publications, which is followed by antioxidant activity and so on (Fig. 1).

Antibacterial activity of phytic acid
Phytic acid is the main storage form of phosphorus in many plant tissues. Recently, food-grade phosphate (including phytic acid) has gained importance among researchers, due to its usefulness as a food additive in a wide variety of meat products. A number of researchers have reported that phosphates shown to exhibit antimicrobial activities, although it has never been classified as an antimicrobial agent. Sodium phytate (sodium salt of phytic acid) has been reported to inhibit Escherichia coli growth in raw or cooked meats including beef, chicken, and pork [10]. In other study, phytic acid from rice bran has been reported to inhibit the growth of both Salmonella typhimurium and E. coli [11].

Anti-diabetic activity of phytic acid
Yoon et al. [12] reported that phytate-enriched diets result in low blood glucose (glycemia) levels in humans. Later two reports shown that phytate regulates insulin secretion through inhibiting the serine/threonine-specific protein phosphatase activity, which, in turn, opens intracellular calcium channels required for insulin release [13,14]. Kuppusamy et al. [15] reported that phytic acid has been shown to inhibit both α-glucosidase and α-amylase inhibition in dose-dependent manner (in vitro) and also shown to possess anti diabetic activity against streptozotocin-nicotinamide induced diabetes (type 2) in rats. In other study, phytic acid extracted from Kenyan local vegetables and grains have been shown to possess both α-glucosidase and α-amylase inhibition [16].

Anti-inflammatory activity of phytic acid
Recent investigations suggest that bioactive natural dietary products play a key role in the alleviation and control of inflammation-related diseases [17,18]. Phytic acid has been reported to exhibit anti-inflammatory activity against carrageen induced paw edema in experimental rats [19].

Antineoplastic/Anticarcinogenic activity of phytic acid
Phytic acid has been shown to exhibit anticancerogenic activity on a wide variety of tumors [20,21], which includes Barrett’s adenocarcinoma [22], breast cancer [23], colon cancer [24,25], gliblastoma [26], laryngeal carcinoma [27], oral cavity squamous cell carcinoma [28], pancreatic cancer [29], prostate cancer [30], and skin cancer [31]. Key mechanism actions of phytic acid against tumors have been shown in Fig. 2.
Antioxidant activity of phytic acid
Phytic acid has been reported to inhibit the hydroxyl radical formation [32,33] and lipid peroxidation activities [1,34]. In another study, phytic acid extracted from Kenyan local vegetables and grains have been shown to possess 2,2-diphenylpicrylhydrazyl radical scavenging activity [16]. Furthermore, phytic acid has been reported to exhibit antioxidant activity [35].

Antiplatelet and anti-angiogenic activity of phytic acid
Vucenik et al. [36] reported that phytic acid inhibits human platelet aggregation in a dose-dependent manner under in vitro condition. 5 years later, phytic acid has been reported to possess anti-angiogenic activity against both in vitro and in vivo induced angiogenesis [37].

Anti-inflammatory activity of phytic acid
Phytic acid has been reported to inhibit the proliferation of human immunodeficiency virus (HIV) under in vitro condition [38]. In another study, anti-HIV1 activity of both myo-inositol hexaphosphoric acid (IP6) and myo-inositol hexa phosphoric acid (IS6) has been reported in detail [39].

Cariostatic activity of phytic acid
Sodium phytate (sodium salt of phytic acid) has been shown to possess cariostatic activity using in vivo studies [40-42]. Kaufman and Kleinberg [43] reported that the cariostatic action of phytic acid and its derivatives have been attributed mainly, due to its ability to lower solubilizes of calcium, fluoride, and phosphate as they major components of tooth enamel. Phytic acid has been tested in toothpaste as a tool for preventing tooth plaque formation [44].

Hemolytic activity of phytic acid
Hemolytic activity of any substances or compounds is a measure of general cytotoxicity toward normal healthy cells. Phytic acid has not shown any hemolysis at ≥1 mM concentration level, however significantly increases the percentage of annexin V-binding erythrocytes [45].

Hypoallergenic activity of phytic acid
Peanut allergy is one of the most common food allergies among the schoolchildren in United States of America (USA) and United Kingdom. Phytic acid has been shown to possess hypoallergenic activity against peanut allergens [46].

Hypolipidemic activity of phytic acid
Phytic acid has been shown to possess neuroprotective activity against Parkinson’s disease [51,52]. Phytic acid has been shown to possess neuroprotective activity against Parkinson’s disease [51,52].

Antiviral activity of phytic acid
Phytic acid has been reported to inhibit the proliferation of human immunodeficiency virus (HIV) under in vitro condition [38]. In another study, anti-HIV1 activity of both myo-inositol hexaphosphoric acid (IP6) and myo-inositol hexa phosphoric acid (IS6) has been reported in detail [39].
Phytic acid has been reported to inhibit the 5-alpha-reductase (type 2) activity using in silico study, which could prevent prostate cancer and hair fall [56].

Phytic acid derivative (PP-56) as aldose reductase inhibitor
Aldose reductase is the key regulatory enzyme in the polyol pathway, which catalyzes glucose to sorbitol. Elevated enzyme has been implicated in the development of diabetic retinopathy, leading cause of blindness. Phytic acid derivative, namely D-myoinositol 1,2,6-trisphosphate (PP-56) has been reported to modulate the aldose reductase activity against streptozotocin-induced diabetic rats, which could prevent diabetic cataract formation [57].

Phytic acid as COX-2 inhibitor
COX is the key regulatory enzyme which catalyzes the conversion of arachidonic acid to prostaglandins, where cyclooxygenase-2 is mainly an inflammatory, inducible enzyme. Phytic acid has been reported to suppress the COX-2 expression in arachymethane-induced colon cancer cells [58].

Myo-inositol phosphate ester (hydrolyzed product of phytic acid) as lipase inhibitor
Lipase is an enzyme which catalyzes the hydrolysis of fats. Elevated enzyme activity is associated with inflammatory or neoplastic disease of the pancreas. Myo-inositol phosphate ester has been reported to inhibit the lipase activity [59].

Phytic acid as matrix metalloproteinase-2 & 9 (MMP-2 & 9) inhibitor
MMP’s are a group of zinc-dependent endopeptidase which can degrade extracellular matrix and are involved in remodelling and turnover of dermis [18]. Phytic acid has been reported to modulate the MMP-2 gene expression in colon cancer cells [60]. In other study, phytic acid has been reported to modulate both the MMP-2 and 9 gene expressions against phorbol-12-myristate 13-acetate stimulated colon cancer cells [61].

Phytic acid as peptic inhibitor
Pepsin is a digestive enzyme which can degrade food proteins into peptides. Pepsin is one of the main causes of mucosal damage during laryngopharyngeal reflux. Phytic acid has been reported to inhibit the pepsin activity [62].

Phytic acid as polyphenol oxidase (PPO) inhibitor
PPO is copper-containing enzyme having both catecholase and cresolase activity. It plays defense role against pathogens and responsible for browning reactions. Phytic acid has been reported to inhibit the PPO activity, which could prevent browning of apple [63].

Phytic acid as protease inhibitor
Protease is a digestive enzyme, which hydrolysis protein into shorter fragments. It occurs in all organisms from prokaryotes to eukaryotes to viruses. Phytic acid has been reported to inhibit the protease activity in fish [64].

Phytic acid as β-Secretase (BACE-1) inhibitor
BACE-1 is a rate-limiting enzyme involved in production and deposition of amyloid-β peptide (Aβ). It is now emerging as marker enzyme for the treatment of Alzheimer’s disease. Phytic acid has been reported to inhibit the BACE-1 activity, which could prevent Aβ accumulation [65].

Phytic acid as tyrosinase inhibitor
Tyrosinase is the main regulatory enzyme in melanogenesis process particularly in the first two steps such as (i) tyrosine hydroxylation to 3, 4-dihydroxyphenylalanine (DOPA) and (ii) the oxidation of DOPA to dopaquinone. Graf et al. [4] have reported phytic acid, as inhibitor of mushroom tyrosinase. In other study, phytic acid containing formulation (Amelan M) has been shown to reduce pigmentation in melasma patients [66].

Phytic acid as xanthine oxidase (XO) inhibitor
XO is the key regulatory enzyme in purine metabolism. It catalyzes the oxidation of hypoxanthine to xanthine and then to uric acid. Phytic acid has been reported to inhibit the XO activity which could prevent gout [67].

APPLICATIONS OF PHYTIC ACID
Phytic acid has been reported for five major applications (Fig. 4) such as adsorption and corrosion inhibition, cosmetic, dental care, industrial, and medical applications [68].

Among these applications, food industry applications of phytic acid have been reported as predominant one, where it has been added to alcoholic beverages, bread, canned seafoods, cheese, fish meal pastes, fruits, juices, meats, miso, noodles, soy sauce, and vegetables to prevent colour and as well as to prolong shelf life of products. In 1997, Food and Drug Administration of the USA regarded sodium phytate as generally recognized as safe status for using the same as preservative in baked foodstuffs [1]. Second medical applications of phytic acid have been gaining importance among researchers, due to its potential therapeutic value [68,69].

CONCLUSION
Phytic acid has shown a number of pharmacological activities such as antibacterial, anti-inflammatory, anticarcinogenic, antioxidant, anti-angiogenic, antiulcer, antiviral, hypoallergenic, hypolipidemic, immunomodulation, and neuroprotection. In addition to these, phytic acid and its derivatives also posses enzyme inhibitory activities against few key enzymes such as 5-alpha-reductase (type-2), aldose reductase, cyclooxygenase (type-2), lipase, MMP-2 and 9, pepsin, PPO, protease, BACE-1 (type-1), tyrosinase, and XO. The profound pharmacological properties have paved way for various applications
of phytic acid. Encouraging pre-clinical studies suggest that phytic acid as a promising pharmaceutical agent for prevention and treatment of various diseases; however, more controlled clinical trials are required to demonstrate its novel therapeutic potential.

AUTHORS' CONTRIBUTIONS
RN (first author), who wrote the manuscript and submitted the same as part of PDF programme. NME (research supervisor), who had added value to it. All authors read and approved the final manuscript.

CONFLICTS OF INTEREST
The authors have declared no conflicts of interest.

REFERENCES

