INTRODUCTION

Cisplatin (CP) is an effective antineoplastic DNA alkylating agent used for a wide variety of cancers. Even though the higher doses of CP are efficacious for the treatment of cancer, they are accompanied by many side effects including nephrotoxicity, neurotoxicity, bone marrow toxicity, gastrointestinal toxicity, and ototoxicity [1]. CP is a strong cellular toxin and nephrotoxicity is one of the most important complications of this drug in clinical and experimental models. The highest concentration of CP is observed in mitochondria, nuclei, cytosol, and microsomes. Nephrotoxicity induced by CP is mediated by mitogen-activated protein kinase (MAPK) intracellular signaling pathways. The MAPK pathways are activated by diverse extracellular physical and chemical stresses that regulate cell proliferation, differentiation, and survival [2]. Primary targets of CP in the kidney are the proximal and distal convoluted tubules where it accumulates and promotes cellular damage, by multiple mechanisms including oxidative stress, DNA damage, and apoptosis [1]. CP is interlinked to glutathione and metabolized through a gamma-glutamyl transpeptidase and cysteine S-conjugate β-lyase-dependent pathways to a reactive thiol. The kidney accumulates CP by peritubular uptake and concentration of the drug in the renal cortex is several folds greater than other organs [2]. Platinum compounds mediate their cytotoxic effects by interaction with DNA. In an aqueous environment, the chloride ligands of CP are replaced by water compounds mediate their cytotoxic effects by interaction with DNA. In an aqueous environment, the chloride ligands of CP are replaced by water.
to study the effect of the plant extract in CP-induced nephropathy in experimental rats.

METHODS

Chemicals

Standardized hydroalcoholic extract of AR (HAEAR) was procured from Shamantak enterprises, Pune. CP cis-diammineplatinum (II) dichloride was purchased from S.K. Enterprises, Pune. All other chemicals used were of the analytical grade.

Animals

A total of 36 Wistar male and female albino rats, weighing 200–250 g, were used for the study. The animals were maintained under standard laboratory conditions with controlled temperature (20±2°C) and humidity (60%) with regular light cycle (12 light/12 dark). The animals were acclimatized for 1 week before the study and had free access to standard laboratory food and water ad libitum. All experimental procedures were conducted in accordance with the principles for the care and use of laboratory animals in research and approved by the Institutional Animal Ethics Committee (ACP/IAEC/2018/01).

Experimental design

The nephroprotective activity was tested on six groups of albino Wistar rats (3 males+3 females), each group consisting of six animals.

Group I - Served as control received normal saline (0.5%; p.o)
Group II - Toxic control rats received normal saline (0.5%; p.o) and CP (6 mg/kg; i.p)
Group III - Received Vitamin E 250 mg/kg as standard nephroprotective agent and CP (6 mg/kg; i.p)
Group IV - Received HAEAR (100 mg/kg; p.o) and CP (6 mg/kg; i.p)
Group V - Received HAEAR (200 mg/kg; p.o) and CP (6 mg/kg; i.p)
Group VI - Received HAEAR (400 mg/kg; p.o) and CP (6 mg/kg; i.p)

On the 15th day, 2 h after the administration of extract and normal saline Groups II–VI received CP (6 mg/kg; i.p). At the end of the experimental period, i.e. on the 16th day, rats were sacrificed by cervical dislocation. The blood was collected in an anticoagulant tube and allowed to stand for 30 min at 37°C and then centrifuged to separate the serum to evaluate the biochemical markers [16,17]. Serum malondialdehyde (MDA) was evaluated using the method of Buege. In this method, 100 μL serum was diluted to 500 μL distilled water. The supernatant was taken and the optical density of the pink color formed was directly proportional to the concentration of serum MDA in the given sample [18]. Serum superoxide dismutase activity was estimated by Marklund and Marklund method. In this method, superoxide anion is involved in auto-oxidation of pyrogallol at alkaline pH (8.5). The superoxide dismutase (SOD) inhibits auto-oxidation of pyrogallol. This can be determined as an increase in absorbance at 420 nm [19]. Jaffe’s alkaline picrate method was used for creatinine estimation. Creatinine reacts with alkaline picrate to give an orange color. Intensity of color formed was directly proportional to the amount of creatinine present in the sample. Albumin determination was done by the Biuret method. Albumin present in globulin, free solution reacts with copper sulfate in alkaline medium to give violet color [20]. The BUN was calculated by Berthelot method. Urea catalyzes the conversion of urea to ammonia and carbon dioxide. The ammonia, thus released reacts with a mixture of salicylate, hypochlorite, and nitroprusside to yield indophenol, a blue-green-colored compound. The intensity of the color produced is directly proportional to the concentration of urea in the sample and was measured spectrophotometrically at 578 nm [21].

Histopathology

Fixation of the kidney was done by cutting and fixing in Bouin’s fluid immediately after removal from the animal body. The tissues were fixed in Bouin’s fluid for about 24 h. The tissues were then taken and washed in glass distilled water for a day to remove excess of picric acid. This was followed by dehydration in which the tissues were kept in the following solutions for an hour each; 30%, 50%, 70%, and 100% alcohol. Xylene was used as the clearing agent, for 1 or 2 h, 2 or 3 times. The tissues were removed out of xylene and were kept in molten paraffin embedding bath with molten paraffin wax maintained at about 50°C. A clear glass plate was smeared with glycerine. L-shaped mold was placed on it to form a rectangular cavity. Molten paraffin wax was poured and air bubbles were removed using a hot needle. The tissue was placed in the paraffin and oriented on the surface to be sectioned. Then, the tissue was pressed gently toward the glass plate to make settle uniformly with a metal pressing rod and allowed the wax to settle and solidity room temperature. The paraffin block was kept in cold water for cooling. Section cutting was done with a rotary microtome. The excess of paraffin around the tissue was removed by trimming, leaving ½ cm around the tissue. Then, the block was attached to the gently heated holder. To produce uniform sections, the microtome knife was adjusted to the proper angle in the knife holder with only the cutting edge coming in contact with the paraffin block. The tissue was cut in the thickness range of about 7 μm. The sections were spread on a warm water bath after they were detached from the knife with the help of hair brush. Required sections were spread on a clean slide and kept at room temperature. The sections were stained as follows: Deparaffinization with xylene 2 times each for 5 min.

Dehydration is done through descending grades of ethyl alcohol. Staining with Ehrlich’s hematoxylin was done for 15 min. Then, sectioned tissues were thoroughly washed in tap water for 10 min rinsed with distilled water and stained with eosin. Dehydration is done again with ascending grades of alcohol. Finally, the tissues were cleared with xylene 2 times, each for about 3 min interval. On the stained slide, DPX mountant was applied uniformly and microglass cover slides were spread. Slides were observed in Nikon microscope and microphotographs were taken [22].

Statistical analysis

The results were expressed as mean ± standard error of the mean. Comparison between groups was made by one-way analysis of variance followed by "Dunnett’s test." p<0.05 was considered to be statistically significant.

RESULTS

Biochemical analysis

CP elicited a significantly increased creatinine levels and serum BUN levels. Serum creatinine was significantly (p<0.001) elevated in the CP group compared to control group. AR treatment (100, 200, and 400 mg/kg) and Vitamin E (250 mg/kg, p.o) significantly (p<0.001) decreased the serum creatinine levels as compared to the CP group. AR (p<0.001) decrease in activity of SOD was observed in the CP group as compared to control. Significant (p<0.001) decrease in the serum albumin level was found when compared to the CP group. Serum BUN level was significantly (p<0.001) elevated in the CP group compared with control group. AR administration significantly (p<0.001) decreased the serum BUN level as compared with the CP control group. AR (400 mg/kg) was comparable to that of the standard group. Significant (p<0.001) decrease in activity of SOD was observed in the CP group as compared to control. AR treatment (100 and 200 mg/kg) and Vitamin E (250 mg/kg) significantly (p<0.001) increased SOD level when compared to the CP group. AR (400 mg/kg) significantly (p<0.001) increased SOD levels. Significant (p<0.001) increase in activity of MDA was observed in the CP group as compared to control. AR (100, 200, and 400 mg/kg) significantly (p<0.001) decreased MDA levels as compared to the CP group. AR (400 mg/kg) exhibited results similar to that of standard Vitamin E (Table 1).
Table 1: Effect of HAEAR on biochemical parameters

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parameters</th>
<th>Albumin (g/dl)</th>
<th>MDA (nmol/mg)</th>
<th>SOD (U/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>BUN (mg/dl)</td>
<td>Creatinine (mg/dl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>20.8±1.31</td>
<td>0.7±0.04</td>
<td>3.89±0.12</td>
<td>7.6±0.14</td>
</tr>
<tr>
<td>CP+Vitamin E 250 mg/kg</td>
<td>57.3±1.50</td>
<td>4.8±0.16</td>
<td>1.70±0.12</td>
<td>15.4±0.16</td>
</tr>
<tr>
<td>CP+HAEAR 100 mg/kg</td>
<td>22.0±0.6</td>
<td>0.8±0.05</td>
<td>3.87±0.08</td>
<td>8.7±0.17</td>
</tr>
<tr>
<td>CP+HAEAR 200 mg/kg</td>
<td>27.6±2.54</td>
<td>1.49±0.97</td>
<td>4.03±0.07</td>
<td>7.6±0.09</td>
</tr>
<tr>
<td>CP+HAEAR 400 mg/kg</td>
<td>22.6±0.54</td>
<td>0.98±0.16</td>
<td>3.02±0.05</td>
<td>8.7±0.17</td>
</tr>
</tbody>
</table>

Values are expressed as mean±SEM (n=6) (ANOVA followed by Dunnett’s test). *p<0.001 when compared to control group, **p<0.01 when compared to CP group. SD: Standard deviation, HAEAR: Hydroalcoholic extract of Asparagus racemosus, CP: Cisplatin, BUN: Blood urea nitrogen, MDA: Malondialdehyde, SOD: Superoxide dismutase, ANOVA: Analysis of variance

Fig. 1: Effect of hydroalcoholic extract of Asparagus racemosus on histopathology of kidneys. (a) Normal control; (b) cisplatin (CP); (c) CP+ Vitamin E 250 mg/kg; (d) CP+ AR 100 mg/kg; (e) CP+ AR 200 mg/kg; (f) CP+ AR 400 mg/kg

DISCUSSION

The urinary tract is the body’s drainage system for excretion of urine that is composed of wastes and extra fluid [23]. It also supports the elimination of nitrogenous waste produced by protein digestion from the bloodstream. The kidneys play an important role in maintaining normal blood pH by eliminating or maintaining acidic and basic compounds in the blood. Another important feature of the urinary system is the ability to distinguish between useful and toxic compounds in the blood that should be maintained or eliminated. The functional units called nephrons are capable of distinguishing between the different compounds dissolved in the blood, and eliminating only those that are not beneficial [24]. Numerous conditions such as diabetes, hypertensive, glomerulonephritis, and autoimmune disease result in damage to the kidneys, thus affecting their ability to filter waste from the blood [25]. CP is used in the treatment of tumors of the neck, head, ovary, lung, and testicular cancer. The major limitation of CP is its ototoxic and nephrotoxic activity which limits its effectiveness [26]. CP exerts dose-dependent nephrotoxicity which limits its clinical usage in cancer chemotherapy.

Thrombotic microangiopathy, hypomagnesemia, salt wasting, Fanconi-like syndrome, and anemia are other clinical manifestations of CP nephrotoxicity. It induces apoptosis and necrosis of renal tubular cells by activation of extrinsic and intrinsic mitochondrial pathways. It also involves p53-mediated proapoptotic activation of pro-inflammatory pathways. Pro-inflammatory pathways activation and infiltration of inflammatory cells are major mechanisms in CP-induced nephrotoxicity [27]. CP binds to DNA and forms inter- and intra-strand cross-links, thus arresting DNA synthesis and replication [3]. The kidney accumulates CP to a greater extent unlike other organs and is the major route for its excretion. The CP concentration in proximal tubular epithelial cells is about 5 times the serum concentration [28]. The disproportionate accumulation of CP in kidney tissue contributes to CP-induced nephrotoxicity [29]. CP in kidneys penetrates tubular cells and concentrates mainly in the proximal tubules causing tubular damage. Tubular damage is characterized by a reduced glomerular filtration rate, increased serum creatinine and BUN, and decreased albumin levels [30]. CP-induced nephropathy model also helps to understand the mechanisms involved in the induction of acute renal failure [35]. Toxins that cause tubular injury share many pathophysiological features with ischemic damage. Thus, CP potentially provides an excellent model not only for studying toxic nephrotoxicity but also ischemic nephrotoxicity [2]. CP (6 mg/kg) was insufficient to induce nephrotoxicity. Vitamin E was one of the antioxidant standard used to ameliorate CP-induced nephrotoxicity in rats. The present study reveals that the HAEAR possessed significant protective activity against CP-induced nephrotoxicity. Creatinine is produced from muscle metabolism. It is transported through the bloodstream to the kidneys. The kidneys filter out most of the creatinine and maintain the normal range of creatinine. Impairment in the function of kidneys results in the rise of creatinine level in the blood causing poor clearance of creatinine. Abnormally high levels of creatinine thus warn of possible malfunction of the kidneys. BUN is another indicator of kidney function. Urea is also a metabolic byproduct which is elevated if kidney function is impaired [32]. BUN level rises if kidney function decreases. Hypoalbuminemia is the strongest predictor of death in patients with renal failure. Albumin is the most abundant protein in nephrotic urine. Patients with lower serum albumin level have consistently higher morbidity rates [33]. Reduction in the GFR was indicated by increased levels of creatinine and BUN [34]. A significant decrease in serum albumin also indicated renal impairment. Administration of AR (100, 200, and 400 mg/kg) had beneficial effects on the kidneys treated with CP. This was evidenced by a significant decrease in the levels of creatinine and BUN in AR-treated group when compared to the CP group. It also augmented the reduced levels of albumin. Treatment with HAEAR markedly ameliorated the levels of creatinine and BUN indicating its renoprotective effect. SOD...
is the primary line of defense against free radical-induced oxidative stress. It is responsible for catalytic dismutation of highly reactive and potentially toxic superoxide radical to hydrogen peroxide [35]. Plants have evolved various protective mechanisms for minimizing deleterious effects of free radicals. The enzymatic defense comprises the efficient antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase [36].

Increased ROS production in renal tissue may be responsible for damage of organs marked by changes in levels of MDA and SOD. MDA levels were significantly increased in rats treated with CP when compared to control group. AR significantly attenuated the MDA levels in renal tissue probably due to its capacity to scavenge oxygen free radicals in the kidneys. Moreover, it also significantly increased the levels of SOD resulting in improvement of kidney function and histopathology. Impairment in the histological features of the kidneys was substantiated by CP treatment. Our study demonstrated histological change in proximal and distal convoluted tubules, which were signs of tubular necrosis and atrophy of the vascular component in glomerulus in CP group. Vitamin E-treated rat kidney sections showed architecture similar to normal tubules. Recovery of renal function was observed by the treatment of AR evidenced by the regenerative capability of the renal tubules.

CONCLUSION
The study concludes that CP injury evidenced elevated biochemical markers and histopathological features of acute tubular necrosis. The administration of HAEAR resulted in dose-dependent attenuation of CP-induced renal damage. The nephroprotective potential may be due to its antioxidant properties. Further studies are required to characterize the phytoconstituents from AR and to study the exact mechanism of action.

AUTHORS’ CONTRIBUTION
Both the authors contributed equally in preparing, editing, and reviewing the article.

CONFLICTS OF INTEREST
All authors declare that they have no conflicts of interest.

REFERENCES