CONSUMMATED REVIEW ON PROSTATITIS

HARINE AG, SUMITRA M*, CHITRA V
Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India. Email: sumi26379@gmail.com
Received: 24 August 2018, Revised and Accepted: 28 November 2018

ABSTRACT

Prostatitis is an inflammatory disease, when the prostate is vulnerable to infectious stimuli like urinary pathogens, are changes in the lifestyle leads to inflammation in the prostate gland. It is a pathological state where the swelling of prostate occur to most of the men and mainly elderly. Recently, prostatitis is a dangerous threat for men almost 50% total men population. The review comprises complete information regarding prostatitis and its related complications. The compilation of the data is about the disease from classification of prostatitis, causative agents, symptoms, treatment, mitigation, natural and alternative therapy to improve the quality of life. Awareness of this disease is not known to the majority of the population when it is left untreated identification and treatment at the right time help in increase in recovering from the pathological condition of the victim to overcome.

Keyword: Urinary pathogens, Prostatitis, Causative agents, Alternative therapy.

INTRODUCTION

The prostate gland is an essential male reproductive organ which is a muscular gland present beneath the bladder and surrounds urethra about the size of a small apricot its pivot function is to secrete prostate fluid and also help propel seminal fluid into the urethra during ejaculation. The action of the prostate gland is similar to the epiglottis, that is, the urethra is the only path for excreting the urine from the bladder, and also the semen fluids are discharged. Vas deferens passed through the prostate gland and connected to the urethra, during the ejaculation millions of sperm moves from testes through vas deferens into the region of the prostate gland. At this point, prostate gland regulates the movement of sperm into the urethra by contraction causing a closing off, opening bladder, and urethra [1].

The prostate fluid makes up about one-third of the total volume of semen, enzymes zinc, and citric acid, the liquid is slightly acid in nature and the fluid secreted by the seminal vesicle is alkaline. This alkalinity helps to protect sperm, prolong their life in an acidic environment of the vagina.

Prostate-specific antigen (PSA) is an enzyme which is one of the major components of the prostatic fluid that regulate the sperm motility, liquefying semen during ejaculation and thickened after ejaculation. PSA aids the biochemical change.

Prostatitis is state of inflammation of prostate gland which causes which cause painful and difficult in urination and obstruct the vas deferens which connect urethra. Almost half of the men in their 60 years suffer from the growth of the prostate called benign prostatic hyperplasia (BPH), according to the Ohio State University Medical Centre. By the age of 70–80, they are prone to nearly 90% chance of developing BPH. Symptoms include urination, dribbling, and a stuttered or weak stream.

EPIEDEMOLOGY

The prevalence of prostatitis can occur from young adult men to elders; there are various reasons for the occurrence of prostate inflammation is mainly due to urinary tract infection especially bacteria is one of the significant factors affecting. Acute bacterial prostatitis (ABP) is acquired by 50% of men commonly. CP/CPPS incidence lies between 2 and 16% worldwide in men below 50 years old [2]. Symptoms can found on average 87 months prior diagnosis. Its undesirable impact on quality of life (QOL) compares to other illnesses. The relative prevalence of other entities among men with prostatitis is 10 to 65% nonbacterial prostatitis and 30 to 80% prostatodinia.

CATEGORIES OF PROSTATITIS

The National Institute of Health (NIH) consensus has categorized prostatitis into four distinct types are (a) acute prostatitis, (b) chronic bacterial, (c) inflammatory/non-inflammatory chronic, and (d) asymptomatic inflammatory [1].

ABP

Acute prostatitis is caused by bacteria that infect the prostate gland and cause inflammation and pain it lasts for a short time, i.e. for 3 weeks to <3 months which are called acute prostatitis. When it extends its span beyond the stipulation of 3 months, called as chronic bacterial prostatitis. The causative agents for inflammation and infection of the prostate are Escherichia coli in mostly and also Chlamydia trachomatis, Enterococcus spp., Klebsiella pneumonia, Neisseria gonorrhoea, Proteus mirabilis, Pseudomonas aeruginosa, and Staphylococcus aureus [3,4]. These bacteria invade the prostate gland and cause infection by consuming contaminated animal products (example chicken), discharge of urine in an unsanitary environment, and contract through sexual activity from a partner who has a bacterial infection. Men suffering from chronic who intermittently perform self-catheterization, indwelling catheters, immunosuppression, and diabetes mellitus, are at higher risk of acquiring ABP due to their increased risk of bacterial colonization of the urethra.

The clinical exhibition of ABP may be highly variable with symptoms ranging from mild to severe. Symptoms include:

• Fever
• Dysuria
• Perineal or lower abdominal pain
• Urinary urgency
• Urinary frequency
• Hematospermia
• Painful ejaculation.
Chronic inflammation plays a significant role in pathogenesis and progression of BPH and prostate cancer according to preclinical trials [16]. Recent studies exploring inflammomasomes in prostate showed prostate expression of nucleotide-binding domain leucine-rich repeat protein 1 (NLRP1), NLRP3, and absent-in-melanoma 2 [17-19], though BPH and prostatitis are distinct entities, there are significant clinical overlap and critical inflammatory component in both [19]. Inflammation has also viewed as a relevant factor in the pathogenesis of BPH. Studies showed infiltrating lymphocytes in the development and progression of prostate adenoma as an effect of a self-maintaining remodeling process [21]. Histological analysis of prostatic tissue remains the only available method to diagnose chronic inflammation. However, chronic inflammation of prostate may be associated with prostatic calcifications, prostate volume, LUTS severity, storage, and prostatitis-like symptoms, inadequate response to medical therapies and urinary biomarker [22]. Chronic inflammation could be a predictor of insufficient response to BPH medical treatment. Studies had shown that men with BPH related LUTS and chronic prostate inflammation might have increased risk of symptom progression and acute urinary retention during follow-up.

PROSTATE CANCER

Inflammation had been found in about 20% of all human malignancies in a tissue microenvironment. Chronic inflammation is an inducer for most prostate malignancy. Chronic inflammation which aids to prostate cancer tissue when medically treated by surgery has given an adverse outcome. Prostate epithelium may damage with various environmental factors they are infectious agents, dietary carcinogens, and hormonal changes which trigger procarcinogenic inflammatory process and leads to cell transformation. Proliferative inflammatory atrophy, mainly in the peripheral prostate zone, refers to chronic inflammation and carcinogenesis cooccurring. This a probable precursor of prostatic intraepithelial neoplasia and prostate cancer [23]. Transcription factor nuclear factor-kappa B (NF-kB) activation has been recognized as the significant effecter of pro-inflammatory processes as well as of prostate cancer pathogenesis [24]. Inflammatory cytokines will promote NF-B complexes for anti-apoptotic signaling in prostate cancer cells. Although signals provided by NF-kb activators are necessary not sufficient for NLRP3 activation [25], NF-kB activation can be promoted through positive feedback with inflammatory cytokines. However, some studies suggest inflammation may relate with lower. Prostate cancer risk [26,27] and some showed that inflammatory genes expressed differently among races in prostate cancer [28,29].

CAUSE OF PROSTATITIS

Various modes of stimuli and components occur the cause of prostatitis. And also, due to unhealthy habitat and diet are majorly proposed to the vulnerable causative agents of the various categories of prostate inflammation or prostatitis [30].

INFECTIOUS STIMULI

Uropathogens mainly Gram-negative bacilli are most often causes bacterial prostatitis, and Gram-positive identified as the causative organism of chronic prostatitis C trachomatis and trichomonas vaginalis are common pathogens cause chronic prostatitis in sexually transmitted diseases. In general, these categories of prostatitis caused due to unhygienic urination, and unhealthy sexual habits play a key role in infectious prostatitis.

NON INFECTIOUS STIMULI

Prostatic inflammation is of multiple etiologies. Urine reflux freely into the prostatic ducts [31] can provide a route for bacterial colonization [32,33]. Other potential factors include dietary components, changes in serum testosterone and estrogen levels autoimmunity, and reflux of harmful chemicals in the urine. Besides,
prostate inflammation can trigger metabolic alterations including metabolic syndrome and dyslipidemia [34-36]. Recent studies showed that smoking and a high-fat diet might relate with prostate inflammation. In a univariable analysis in Reduction by Dutasteride of Prostate Cancer Events study, smoking associated with chronic prostate inflammation. Current smokers were prone to have acute inflammation and chronic inflammation in the baseline biopsy [37]. On the other hand, a high-fat diet may induce oxidative stress and inflammation in the prostate gland by driving the nicotinamide adenine dinucleotide phosphate oxidase system and generating reactive oxygen species (ROS) [38]. A high-fat diet also causes a significant increase in proinflammatory cytokines through activation of Signal Transducer and Activator of Transcription-3 and NF-κB pathway. Both these pathways involved in proliferation, survival, angiogenesis, invasion, and inflammation in the prostate.

SEROUS COMPONENT OF PROSTATE

Besides, the cytokines directly made by cellular counterparts of prostate inflammation, the resistance has special sorts of activation in prostate inflammation. There are two sorts of patterns of the stimuli which will activate the innate system; one is pathogen-associated molecular patterns (PAMPs), and also an alternative is danger-associated molecular patterns (DAMPs), that is, especially molecules derived from broken or dying cells. These patterns are recognized by pattern recognition receptors (PRRs), which can found in specialized epithelia, immune cells, and alternative tissues. PRRs divided into five families, together with toll-like receptors (TLRs). C-type lectins, retinoic acid-inducible gene-I-like receptors, and HIN-200, and NLRs. The means some members of the NLR and HIN-200 families answer DAMPs or PAMPs by forming supermolecular structures called inflammasomes. They will typically mix adapter molecules similar to apoptosis-associated speck-like supermolecule (ASC). These structures activate the aminoalkanoic acid enzyme caspase-1, that cleaves pro-interleukin 1 beta (IL-1β) to IL-1β and pro-IL-18 to IL-18. These mature cytokines are pro-inflammatory, and so they trigger a typical inflammatory response. The inflammasome is called once the PRR that organizes it. Parenthetically, NLRP3 is associate in nursing inflammasome organized by NACHT, LRR, and PYD domain-s-containing supermolecule three, that play a crucial role in many urologic pathology. Typically the chronic inflammation starts with inflammasome, which is initiated by a canonical and noncanonical pathway [39-42].

The first step, priming is related to ligand binding to a non NLR receptor. It can increase the expression of inflammasome components. For instance is LPS binding to Toll-like receptor 4 (TLR4), that increase the expression of ASC, NLRP3, Caspase-1, and pro-IL-1β [43]. Priming additionally promotes preexistent NLRP3 by deubiquitination, thus refer it for activation. IL-18 usually constitutively expressed.

The second step, activation is triggered by certain stimuli and result in cellular changes. Stimuli events embrace the presence of ROS, extracellular adenosine triphosphate binding with the purinergic receptor, or insoluble crystals damaging the semipermeable membrane. Cellular changes embrace production of ROS, potassium efflux from the cell, translocation of NLRP3 to the mitochondria; this leads to the mitochondrial degradation with unleashing of DNA and cardiolipin, and activation, which triggers nucleation of ASC proteins. They will interact with procaspase-1, and promote auto-protolytic maturation of caspase-1. Activated caspase-1 is then free from the complex and cleaves pro-IL-1β and pro-IL-18 to their mature forms. Active caspase-1 may also cleave gasdermin D which can begin a lytic necroptosis process called pyroptosis [44-46]. Inflammation exacerbation increased in pyroptosis, as a result of it ends in the discharge of the mature IL-1β, IL-18, and DAMPs such as uric acid [47], ATP, and high motile group box 1. High motile group box 1 (HMGB1), which then activate inflammasome in neighbour cells. The free ASC-containing increases the uptake by macrophages, which start inflammasome activation within, or mature procytokinines in extracellular in extracellular space. N terminus gasdermin D itself can also promote NLRP3 dependent activation of caspase-1 [48].

The non-canonical pathway is the alternative way of activating NLRP3 inflammasome complex. There involve caspase-4 and 5 in humans and caspase-11 in rodents [49-51]. These caspases are activated by direct-binding to intracellular bacteria or LPS. Once activated, caspase-11 can trigger the formation of the macromolecular inflammasome and activates downstream events. However, caspase-11 can also cleave gasdermin directly and induce pyroptosis even without inflammasome formation.

Seminal plasma IL-8 (SIL-8) appears to be the most reliable and predictive marker of prostatitis [52]. Furthermore, the evidence is emerging on SIL-8 involvement in inflammation not only of the prostate but also of other male genital tract organs; in particular, seminal vesicles and epididymis, but not testis. SIL-8 is strongly related to leukocytes permissiva, and a tight inverse correlation with ejaculate volume has demonstrated, which may correlate with ejaculatory duct and seminal vesicle abnormalities.

CELLULAR COMPONENT OF PROSTATE INFLAMMATION

In the initial stage of ABP, the infection of micro-organism promotes neutrophils and macrophages continued by lymphocytic infiltration in the advanced stages [53]. Later the acute phase, the majority of infiltrative leukocytes in the inflamed prostate are chronically activate T lymphocytes and macrophages [54,55]. Mouse models of inflammation showed very similar infiltrative components as inflamed human prostate [56]. Th1 cells control the immune response to intracellular pathogens through interferon and IL-2. Type 1 T helper cells produce IL-4, IL-13, and IL-5 in the hypersensitivity response. Th17 cells appear as host defense against extracellular pathogens through IL-17 and IL-21. Resident epithelial and stromal cells express several TLRs, including TLR-4, TLR-5, TLR-7, and TLR-9, and also produce IL-1, IL-6, and IL-15 during inflammation [57]. Prostatic epithelial cells express Class II major histocompatibility complex molecules that participate in organ-specific inflammation, resulting in the production of IL-6, IL-8, and CXCL10, and leukocyte recruitment [58]. Stromal cells express CD80, CD86, CD40, and CD134L and activate T lymphocytes directly. These activities contribute to a chronic state of inflammation.

DIAGNOSIS

Diagnosis of all type prostatitis is mentioned below [59].

ABP

1. Physical examination
2. Urine analysis and culture
3. Imaging
 I. Transrectal prostatic ultrasound (TRUS) or computed tomography
 II. Pelvic ultrasound or bladder scan.

CHRONIC BACTERIAL PROSTATITIS

1. Physical examination
2. Microbiological localization culture of a lower urinary tract
 I. 4-Glass test
 II. 2-Glass Pre and Post Massage Test (PPMT)
3. Semen culture
4. TRUS
5. Urodynamic (examination for urine flow).

CHRONIC PROSTATITIS/CPPS

1. Symptoms scoring questionnaires (according to NIH-Chronic Prostatitis Symptoms Index)
2. Cytoscopy
3. Endoscopy (patients with hematuria)
Table 1: Treatment of acute and chronic bacterial prostatitis [60]

<table>
<thead>
<tr>
<th>Type of Prostatitis</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABP (Mild or moderate disease while anticipating culture)</td>
<td>Trimethoprim 300 mg taken orally 14 days [60], or Cephalexin 500 mg administered orally b.i.d. for 14 days, or Clavulanic acid and amoxicillin 125 mg+500 mg orally b.i.d. for 14 days.</td>
</tr>
<tr>
<td>Appears unable to resist or septic anticipated oral therapy</td>
<td>Norfloxacin 400 mg is administered orally every 12 h for 4 weeks, or Trimethoprim 300 mg orally daily for 4 weeks. If ureaplasma or chlamydia noted, Doxycycline 100 mg given orally every 12 h for 2–4 weeks.</td>
</tr>
</tbody>
</table>

Chronic bacterial prostate inflammation

The first line of treatment

Nortriptyline, Nortriptyline and pregabalin are new medication for the treatment of prostatitis, prescribed for the urinary frequency and urgency. Allethoprim, Nortriptyline, and gentamycin or ceftriaxone as persevere pyelonephritis treatment.

Phytotherapy

Myofascial release is a hand on technique that involves pressure into the connective tissue to eliminate pain and restore function and motion in affected area. Pressing and stretching of the particular region also practices like cooling and warming, of the muscles and soft tissues in the lower back, pelvic region, and upper legs leads to relief in pain. Also known as myofascial trigger point release (Table 2) [68].

Acupuncture

Acupuncture as an effective treatment to improve symptoms of CP/CPPS. Composed with sham acupuncture, real acupuncture leads to significant reductions in the pain, urinary symptoms, and QOL domains of the NIH chronic prostatitis symptom index [67].

HORMONE THERAPY

The principal activity in hormone therapy is blocking hormonal activity leads to the inhibition of growth of cancer cells, for example, luteinizing hormone producing hormones, which exhibits the mechanism of action that can cause gonadotropin secretion inhibition. Following an early stimulation of gonadotropin, testicular steroigensesis suppression occurs due to long-term administration of leuprolide acetate. It results in inhibition of the growth of the specific hormone, proves and shows that luteinizing hormone-releasing hormone agonists promote tumors (such as prostatic tumors). Examples are buserelin, leuprolide, and goserelin [75]. Antiandrogens exert its action by inhibiting androgen uptake and by inhibiting nuclear binding of androgen to the androgen receptors on prostatic cells such as flutamide and nilutamide. Studies are still being accomplished to find the ideal therapy for localized prostate cancer.

Clinical management

Clinical management of prostatitis is possible by avoiding ignorance of pain and its aided symptoms. Early detection of prostatitis is completely curable and monitoring the abnormalities after the recovery of the prostatitis is necessary. If the prostatitis is left untreated that leads to the chronic stage and later it causes enlargement as associated hardening of the prostate gland that finally ends resulting in prostate cancer. Identification of the exact stage of prostate enlargement whether it is prostatitis or prostate cancer by a conventional test such as PSA and digital rectal exam for application in clinical practice [76]. There is a strong similarity among the clinical and molecular assays in identifying initially and robust cancer determination because molecular assays are less aggressive and reliable. The genetic markers have the ability to providing useful prognostic or
predictive information into clinically useful diagnostic tests to improve clinical decision-making and enhance therapeutic success.

CONCLUSION

The prostatitis is one of the most common diseases that affect men. Treatment of this disease has to perform according to the patient’s sign and symptoms and also the duration of the illness has to consider deeply to identify the category of the prostate inflammation and to provide appropriate treatment. Various diagnostic procedures have to undergo for critical analysis of the type of prostatitis. Many types of research are emerging for the treatment of chronic prostatitis in multiple fields such as Ayurveda, acupuncture, and physical therapy. Clinical trials are under process for hormonal therapy for the curative purpose. The researchers are targeting on the anti-inflammatory activity on prostatitis from the active phytochemical and isolated compound in natural or crude drugs.

ACKNOWLEDGMENT

I am highly indebted to SRM Institute of Science and Technology management and staffs for the valuable guidance and constant supervision for supporting to complete this review.

AUTHORS’ CONTRIBUTIONS

All the authors in this review literature have given an equal contribution and for collecting the information and compiling the data.

CONFLICTS OF INTEREST

The author declares that we did not have the conflicts of interest for collecting the information of compiling this article and also for the paper publication.
The role of unusual pathogens in prostatitis syndrome. Int J

The role of inflammation in lower urinary tract

Inflammatory

Smoking is associated with acute and chronic

Tumor immunobiological differences in prostate cancer

Negative bacterial polymerase chain

The role of prostatic inflammation in the development and

17. Chen CS, Chang PJ, Lin WY , Huang YC, Ho DR. Evidences of the

16. Gandaglia G, Zaffuto E, Fossati N, Cucchiara V , Mirone V , Montorsi F,

15. Nickel JC, Weidner W. Chronic prostatitis: Current concepts and

14. Krieger JN, Ross SO, Penson DF, Riley DE. Symptoms and

8. Leskinen MJ, Rantakokko-Jalava K, Manninen R, Leppilahti M,

REFERENCES

2013;112:432-41.

et al.

et al.