Vitex trifolia: AN ETHNOBOTANICAL AND PHARMACOLOGICAL REVIEW

SUCHITRA M, BINOY VARGHESE CHERIYAN*

Department of Pharmaceutical Chemistry and Analysis, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India. Email: lallybinoy@gmail.com

ABSTRACT

INTRODUCTION

Plants used in traditional system of medicine have the advantage little or no side effect. Most of the species of the genus Vitex are widely used in traditional Indian systems of medicine. Around 270 plant species of genus Vitex have been reported worldwide [1,2]. Vitex trifolia belongs to the family Lamiaceae. Vitex trifolia is an aromatic tropical deciduous shrub or small plant growing from 1–4 m tall (Fig. 1).

MORPHOLOGICAL EVALUATION

The green leaves of V. trifolia have resinous glands tomentose beneath 7–12 pairs of lateral nerves, terminal, and supraaxillary, 5–26 cm long panicles [3]. Three-foliolate leaflets are elliptic or oblone-ovobate, slender, canaliculate, 0.5–3.5 cm long, and grey-appressed petals. Usually obtuse or acute to cuneate at base, entire along margins, acuminate at apex leafy leaflet, middle leaflets 2.5–6.5×1–3.5 cm, petiolules 0.5 cm long, and terminal leaflets 2.5–4.5×1–1.5 cm in diameter forming mats several meters in diameter and with soft hair called tomentose, fragrant flowers with pedicels of 0.5–1 cm long. Calyx campanulate the flowers are born in panicles with purple to violet two-lipped corollas and the fruits 6 mm in diameter bearing four small black seeds [5].

MICROSCOPIC EVALUATION

The leaflet has smooth adaxial surface 140 µm thick along the ridged part of the leaflet and 120 µm thick in between the ridges. Thick and prominent adaxial epidermis with rectangular cell and fairly thick walled subepidermal layer with 10 µm thin cuticle. The hypodermal layer is 15 µm thick. The midrib is thick. The epidermal layer is a narrow with small-walled. The ground tissue of the midrib consists of circular thin-walled compact parenchyma cells [4]. The vascular system of the midrib has vascular strand consists of several parallel rows of xylem which are about six cells angular and thick walled with narrow parenchymatous space in between the xylem rows. The adaxial is circular and collateral the abaxial epidermis is narrow with dense non-glandular trichomes. The mesophyll consists of four layers cylindrical cells. The height of these palisade and spongy parenchyma cells reduced gradually toward the lower part.

TAXONOMICAL CLASSIFICATION [6]

Vernacular names
- Sanskrit: Jalanirgundi,
- Hindi: Nichinda,
- Manipuri: Urkhibi,
- Bengali: Paniki-shumbala,
- Kannada: Nira-lakki-gida,
- Malayalam: Lagondi, Nirnoscchi,
- Tamil: Nirnochchi, Shirunoch-chi,
- Telugu: Niruvavilli, Shiruvavili.

Phytochemical constituents

The plant contains polyphenolic compounds, flavonoids, proteins, tannins, phytosterols, and saponins. Fruits of V. trifolia consist [7-9] of essential oil, Vitex trifolia A-G, monoterpene along with diterpenes, dihydroisodigalogenone, beta-sitosterol-3-0-glucoside, terpineol, alpha-pinene, 1,6,7-trimethylquercetagetin [10], hecian, and dichloromethanolic were extracted from stem [11]. The methyl-p-hydroxy benzoate was reported [12]. Six flavonoids have been isolated [13]. 15 compounds were isolated from V. trifolia. Leaves and bark contain an essential oil, flavones, artemetin and 7-dimethyl artemetin [14], friedelin, and some non-flavonoids and alkaloids. Caryophyllene is the major sesquiterpene. Vitrin, a new alkaloid, has been isolated from the plant [15]. V. trifolia contains palmitic acid, ethyl-p-hydroxybenzoate,

Keywords:
- The review on V. trifolia explains that there is a need for detailed study on its clinical relevance and safety of plant extracts.
- The perspective of this review is the list of activities carried out or studied along with description, habitat macro-microscopy, phytoconstituents, medicinal uses, clinical studies, and toxicology on the plant Vitex trifolia.
Traditional uses
It is used as anti-inflammatory in Chinese folk medicine in the treatment of headaches, colds, migraine, eye pain [21], rheumatic pains, and cancer [22]. The leaves possess insecticidal, antibacterial activity [23], eczema, ringworm, liver disorders, spleen enlargement, rheumatic pain, gout, abscess, antiseptic, berberi, diuretic, febrifuge, treating sprains, confusions, and swollen testicles [24,25] and fruits an acid alkaloid and coloring matter are used in the treatment of amenorrhea, common cold, headache, watery eyes, and mastitis, to control population, nervine, cephalic, and emmenagogue which stimulate blood flow in the pelvic area and uterus. *V. trifolia* is known as sambhalu in Unani medicine in the treatment of decreasing libido. The inner bark is used for dysentery, expectorant, lowering blood pressure and treating common cold, prosopalgia, chronic tracheitis, sinusitis, periodontitis, and rheumatism and used in the treatment of pulmonary tuberculosis. The roots are used as antihelmintic, insecticidal, and diuretic.

In vitro and in vivo studies

The larvicidal activity
A comparative study of the extracts of Vitex species against larvae of *Culex quinquefasciatus* was performed. The fatty acid methyl ester extract of *V. trifolia* showed the highest larvicidal activity among these species and this activity can be attributed to the highest percentage of linolenic acid present in *V. trifolia* [20].

Antinociceptive/anti-inflammatory

The leaf extract of *V. trifolia* was explored for its role on nociception and found that it was effective in ameliorating pain. This study demonstrated the antinociceptive activity of *V. trifolia* and potentiated its antinociceptive effect with the standard analgesic agents. A dose-dependent anti-inflammatory activity on acute model of inflammation was also reported [26]. Aqueous extract of leaves *V. trifolia* was tested on acute and chronic models of inflammation such as carrageenan-induced paw edema, granuloma pouch, and formaldehyde-induced arthritic models. Results showed significant inhibition of paw edema formation and also significant inhibition of exudates formation [27].

The antinociceptive potential of *V. trifolia* was studied using standard models of nociception such as acetic acid-induced writhing method and tail immersion test. In acetic acid-induced writhing method, a significant reduction in the number of writhes was clearly observed. In tail immersion method, the latent period to withdraw the tail was also recorded. Rats treated with the highest dose (400 mg) levels showed significant antinociceptive activity concluding that *V. trifolia* Linn. is effective ameliorating both central and peripheral nociception [28].

Hepatoprotective/flowers

The hepatoprotective effect of the ethanolic extracts of the flowers of *V. trifolia* was studied on rodent models and carbon tetrachloride-induced hepatic injury model was employed. The hepatoprotective effect was comparable to standard drug, silymarin [29]. The serum was subjected to biochemical tests and found that a greater reduction in the liver enzymes such as serum glutamic-oxaloacetic transaminase, serum glutamic pyruvic transaminase, alkaline phosphatase, gamma-glutamyl transpeptidase, and total bilirubin; there was also an elevation in total protein level in rodents treated with ethanolic and aqueous extracts of *V. trifolia*. A significant rise in liver enzymes was reported in non-treated group indicating hepatic damage. The hepatoprotective effect of *V. trifolia* is also supported by histopathological finding normal hepatic architecture with few fatty lobules concluding that *V. trifolia* offered significant protection against CCl₄-induced hepatocellular injury.

Anticancer/antifungal

Hexane and dichloromethane extracts of *V. trifolia* from aerial parts were reported to possess cytotoxic against various cell lines [10]. The hexanic extract of *V. trifolia* obtained from the leaves showed significant inhibition of the fungal plant pathogen *Fusarium* species. Another study [30] evaluated the cytotoxic effect of methanol and petroleum ether extracts against MCF-7 and Vero cell lines. Results of the study demonstrated strong cytotoxic against MCF-7 cell lines and weak activity against the Vero cell line, suggesting *V. trifolia* as promising chemotherapeutic agent in the treatment of breast cancer.

Antidiabetic

The leaves exhibited significant antihyperglycemia concluding the antidiabetic activity of *V. trifolia* [31].

Wound healing

The ethanol leaf extracts of *V. trifolia* and *Vitex altissima* were tested for its potential wound healing activity. The study showed both extracts possessed significant wound healing activity. *V. trifolia* showed maximum healing activity by exhibiting enhanced wound contraction and reduced the period of epithelization as compared to *V. altissima* [32].

Antibacterial

The potential antibacterial activity of the extracts of *Morindacis trifolia*, *V. trifolia* (leaf), and *Chromolaena odorata* was assessed and the results were comparable for its antibacterial activity [33].

Antitubercular diterpenoids/leaves

CONCLUSION

The plant *V. trifolia* is an aromatic coastal deciduous shrub grown India, Bangladesh, and Sri Lanka which is used as a traditional folk medicine for various ailments had been evaluated for in vitro antimicrobial, antioxidant, and in vivo hepatoprotective, antinociceptive, antiasthmatic, antibacterial, and analgesic activity. The phytochemical constituents of the methanolic and ethanolic extracts of the aerial parts of the plant was evaluated and reported. Further, a detailed study on *V. trifolia* is necessary for the development of novel drugs in the
arena antiandrogenic, antiarthritic, antidiabetic, antihypertensive, neuropathic, antiallergic, antipsychotic, and anticonvulsant activity to be done.

ACKNOWLEDGMENT

The authors are thankful to the School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies, and its management for providing research facilities and encouragement.

REFERENCES