INTRODUCTION

Amlodipine besylate (AD), 2-[2-((aminoethyl)-methyl)-4-[(2-chlorophenyl)-1,4-dihydro-6-methyl-5-pyridyne dicarboxylic acid 3-ethyl-5-methyl ester, benzene sulfonate, is a potent dihydrotikal channel blocker [1-5]. Various analytical methods have been reported for the assay of AD alone or in combination with other antihypertensive agents in pharmaceutical formulations. These include reverse-phase high-performance liquid chromatography [6-8], stability-indicating LC method [9], HPLC method [10,11], in plasma [12,13], high-performance thin-layer chromatography (HPTLC) [14], HPTLC in plasma [15], and Ultra-performance liquid chromatography (UPLC) [16] and ultraviolet (UV) spectroscopic methods [17-22].

Valsartan (VAL) chemically, N-[1-oxopentyl]-N-[2‘-(1H-tetrazol-5-yl) 1 ‘-biphenyll-4-yl] methyl-L-valine, is a potent angiotensin receptor blocker [1-3]. Methods such as HPLC [23-26], in plasma [27], bioanalytical method [28], UPLC method [29], and thermogravimetric method [30] are reported for estimation of VAL alone or in combination with other drugs.

Rosuvastatin (RV) chemically, 7-[4-(4-fluorophenyl)-6-(1-methyl-2-(methyl(methylsulfanyl)amino)-pyrimidin-5-yl)] 3, 5-di-hydroxy-hept-6-enoic acid, is one of the more recently introduced agents in pharmaceutical formulations. These include reverse-phase high-performance liquid chromatography (RP-HPLC) methods have been widely used for routine quality control assessment of drugs due to their accuracy, repeatability, selectively, sensitivity, and specificity. We have developed a simple, precise, accurate, and specific RP-HPLC method for the simultaneous determination of AM and VAL and RV and VAL with unique mobile phase. Ability of unique mobile phase for the estimation of two or more formulations is advantageous during analysis which saves time as well as provides stable chromatographic conditions. Therefore, an attempt has been made to develop a suitable analytical method for simultaneous estimation of AM and VAL from their pharmaceutical formulations and RV and VAL in bulk mixture. RP-HPLC methods have been widely used for routine quality control assessment of drugs due to their accuracy, repeatability, selectivity, sensitivity, and specificity. We have developed a simple, precise, accurate, and specific RP-HPLC method for the simultaneous determination of AM and VAL, and RV and VAL with unique mobile phase. Analytical method must be validated before use to ensure that the method under consideration is capable of giving reproducible and reliable results. The proposed HPLC with UV detection method was validated in accordance with the International Conference on Harmonization (ICH) guidelines [40,41], by assessing its selectivity, linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ).

METHODS

Instrumentation

Analysis was performed with a Shimadzu (Japan) prominence chromatograph equipped with an LC-20 AT solvent delivery system, a universal loop injector (Rheodyne 7725) of injection capacity of 20 µl, The drugs are official in BP [38]. AD, VAL, and RV are official in IP [39]. The chemical structures of AMB, VAL, and RV are shown in Fig. 1.
Fig. 1 Chemical structure of (a) amlodipine besylate, (b) valsartan, (c) rosuvastatin

Preparation of stock solution of AD, RV, and VAL

About 10 mg of AD, 20 mg of VAL, and 10 mg of RV were accurately weighed and transferred into 50 ml volumetric flasks separately. It was dissolved in mobile phase and the volume was made up to 50 ml with mobile phase. From this standard stock solution, the aliquots of solution were further diluted with mobile phase to obtain standard solution with conc. range of 1–12 μg/ml for AD, 5–50 μg/ml for VAL, and 2–20 μg/ml for RV. Furthermore, mixed standard solution was prepared simulated marketed pharmaceutical dosage form.

Plot of calibration curve

Calibration curve for each drug was plotted at the concentrations of 1–12 μg/ml for AD, 2–20 μg/ml for RV, and 5–50 μg/ml for VAL. All the standard solutions were filtered through syringe filter and injected 20 μl each time with Hamilton syringe. Peak areas were then plotted against their respective concentrations for AD, RV, and VAL. From the calibration curve, it was found that all the drugs were linear in the concentration range of 1–12 μg/ml for AD, 2–20 μg/ml, and 5–50 μg/ml for AD, RV, and VAL, respectively. The calibration graph was used as a reference to know quantitatively conc. of unknown solution of dosage form.

Statistical parameters – standard regression curve analysis was obtained by the use of Microsoft Office Excel software and means, standard deviations, and coefficient of variance were calculated.

Assay of tablet formulation and bulk mixture

The 20 tablets of the formulation of AD and VAL were weighed and average weight of each tablet was found. Tablets of formulation were triturated into a fine powder form with a glass mortar pestle. Tablet powder equivalent to 2.5 mg AD and 40 mg of VAL was quantitatively transferred into a 50 ml volumetric flask and dissolved in mobile phase and volume was made up to 50 ml with mobile phase. The solution was sonicated for 15 min, to ensure the uniform and homogenous solution of the drug. Further, solution was centrifuged at 500 rpm for 10 min and the clear supernatant was collected and filtered through membrane syringe filter (pore size 0.45 μm). The aliquots of clear solution were further diluted to 10 ml with mobile phase to obtain 16 μg/ml of VAL and 1 μg/ml of AD. Each sample solution was injected and the peak areas were measured for the determination of AD and VAL in tablet formulation.

Similarly, the bulk mixture, 10 mg of RV and 80 mg of VAL, was prepared, homogenized and powder equivalent to 2.5 mg of RV and 80 mg of VAL was weighed and transferred into a 50 ml volumetric flask and dissolved in mobile phase and volume was made up to 50 ml with mobile phase. The solution was sonicated for 15 min, to ensure the uniform and homogenous solution of the drug. The aliquot of solution was further diluted to 10 ml with mobile phase to obtain 2 μg/ml of RV and 16 μg/ml of VAL. The solution was filtered through syringe filter (pore size 0.45 μ) and injected 20 μl with Hamilton syringe. Peak areas were measured for the determination of RV and VAL in bulk mixture.

Method validation

The objective of method validation is to demonstrate that the method is suitable for its intended purpose as it is stated in the ICH guidelines. The method was validated for linearity, precision (repeatability and intermediate precision), accuracy, selectivity, and specificity. Accuracy was assessed by measuring recovery at three different levels. Precision assessed by the measurement of intra- and inter-day precision. In the intraday study, the concentrations of all the drugs were calculated 6 times on the same day at different time intervals. In the interday study, the concentrations of the drugs were calculated on 6 different days. Selectivity and specificity of the method were assessed by injecting solutions containing all the drugs; after chromatography, three sharp peaks were obtained for all drugs. LOD and LOQ were measured to evaluate the detection and quantitation limits of the method and to determine whether these were affected by the presence of impurities. They were calculated by the use of the equations LOD = 3.3 σ/S and LOQ = 10 σ/S, where σ is the standard deviation of the response and S is the slope of the calibration plot.

RESULTS AND DISCUSSION

HPLC method development and optimization

The multicomponent formulations have gained a lot of importance as there is greater patient acceptability, increased potency, and decreased side effects. AD and VAL are a recent combination in the market used for the treatment of hypertension; RV and VAL are combination of antilipemic agent and angiotensin I receptor blocker, respectively. This work was focused on optimization of the conditions for the simple and rapid as well as low cost-effective analysis including a selection of the proper column or mobile phase to obtain satisfactory results.

Solvent type, solvent strength (volume fraction of organic solvent(s) in the mobile phase and pH of the solution), detection wavelength, and flow rate were varied to determine the chromatographic conditions giving the best separation. The mobile phase conditions were optimized so there was no interference from solvent and excipients. Other criteria, for example, time required for analysis, appropriate k range (1<k<10) for eluted peaks, assay sensitivity, solvent noise, and use of the same solvent system for extraction of the drugs from the formulations during drug analysis were also considered.
To optimize mobile phase, chromatogram of all these drugs were obtained in mobile phase acetonitrile:water in 60:40% v/v, but all drugs eluted after 9 min. Then, the proportion of acetonitrile was increased to 70% and the result was elution of two drugs within 6 min and VAL eluted after 8 min found. Furthermore, mobile phase composition was changed to methanol:water in proportion 70:30% v/v, the result was distorted signals that were not well defined. Addition of 0.5 mL acetic acid for adjustment of the pH resulted in good separation and symmetrical peaks.

To determine the appropriate wavelength for simultaneous determination of AD and VAL, RV and VAL solutions of these compounds in mobile phase were scanned in the range of 200–400 nm. From the overlaid UV spectra, suitable wavelength considered for monitoring the drugs was 245 nm. Solutions of each substance in the mobile phase were also injected directly for HPLC analysis and the responses (peak area) were recorded at 245 nm. It was observed that all analytes absorbed well at 245 nm, and at this wavelength, there was no interference from the mobile phase or baseline disturbance, and it was, therefore, concluded that 245 nm was the most appropriate wavelength for analysis of drugs with suitable sensitivity.

The optimum mobile phase was, therefore, acetonitrile:water (pH 4.8±0.1) in the ratio 75:25 (v/v). Under these experimental conditions, sharp peaks were obtained for AD, RV, and VAL at the

![Fig. 2: Optimized chromatogram of amlodipine besylate](image)

![Fig. 3: Optimized chromatogram of rosuvastatin calcium](image)

![Fig. 4: Optimized chromatogram of valsartan](image)
retention times 2.41, 4.01, and 5.02 min, respectively. The optimized chromatogram of AD, RV, and VAL was obtained and shown in (Figs. 2, 3 and 4). The resolution (RS) between AD and VAL was 2.49 and between RV and VAL was found 5.694.

Method validation

The system suitability parameters such as capacity factor, number of theoretical plates, and tailing factor for all the analytes were found within the limit, indicating the suitability of the system (Table 1). The values obtained for k′ (1 < k′< 10) and RS (>2) showed that these chromatographic conditions are appropriate for separation and quantification of all compounds. The number of theoretical plates and the tailing factor was within the acceptance criteria of >2000 and ≤1.5, respectively, indicating good column efficiency and optimum mobile phase composition.

Linearity

Linearity was tested in the concentration range of 1–12 μg/ml for AD, 2–20 μg/ml for RV, and 5–50 μg/ml for VAL. The solutions were chromatographed six times, in accordance with the International Conference on Harmonization. Separate calibration plots for AD, RV, and VAL were constructed by plotting peak area against the respective concentrations and the method was evaluated by determination of the correlation coefficient and intercept (Fig. 5), calculated in the corresponding statistical study (ANOVA; Z), correlation coefficient r² values >0.999, and intercepts very close to zero confirmed the good linearity of the method. The Z values calculated for the calibration plots were obtained in satisfactory range, indicating that the variances were not significantly different (Table 2).

Assay

The percentage label claim of tablet formulation was found to 101.39% and 100.051% for AD and VAL, and 99.58% and 100.32% for RV and VAL, respectively. The chromatogram of the analysis of formulation AD and VAL is shown in Fig. 6, and for analysis of bulk mixture RV and VAL is shown in Fig. 7. Precision of the method was confirmed by the repeated analysis of formulation for 6 times. The percentage coefficient of variation (CV) values were found to be 0.6866 and 1.6856 for AD and VAL, and 0.5894 and 1.1899 for VAL and RV, respectively. The low percentage CV values indicated that all the three drugs showed good agreement with the label claim ensure the precision of the method shown in Table 3.

Precision

Intraday and interday precision was determined by repeating assay 3 times on the same day for intraday and on 3 different days for interday precision. The intraday precision was studied with standard deviation as 1.5820 and 1.1721 for AD and VAL, and 1.6297 and 1.6067 for RV and VAL, respectively. The interday precision was also studied with standard deviation of 1.7878 and 1.6156 for AD and VAL, and 1.4446 and 1.2356 for RV and VAL, respectively, tabulated in Table 4.
Accuracy
To check the accuracy of the developed methods and to study the interference of formulation excipients, analytical recovery experiments were carried out as per the ICH guidelines.

The results of the recovery studies and its statistical validation data given in Table 4 indicate high accuracy of the proposed method. The percentage recovery was found to be in the range of 98.73–102.89% for AD and 98.58–103.58% for VAL. The percentage COV values for AD and VAL were found to be ±2% variation in volume of mobile phase composition, ±0.1 ml/min variation in flow rate of mobile phase, and ±0.1 variation in pH.

Specificity
The specificity of the HPLC method was ascertained by analyzing standard drug and sample solutions. The retention time of AD, RV, and VAL was confirmed by comparing the retention time with that of the standard.

CONCLUSIONS
A simple isocratic RP-HPLC method with UV detection has been developed for simultaneous determination of AD and VAL, and RV and VAL. The method was validated for accuracy, precision, specificity, and linearity. The run time is relatively short (8 min), which enables...

Table 3: Results of tablet formulations assay

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Drug</th>
<th>Label claim (mg/tablet)</th>
<th>Amount found (mg) n=6</th>
<th>Drug content (%)</th>
<th>SD</th>
<th>Coeff. of variance (%)</th>
<th>Std. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form. of AD and VAL</td>
<td>AD</td>
<td>10</td>
<td>10.1397</td>
<td>101.397</td>
<td>0.6962</td>
<td>0.6866</td>
<td>0.28030</td>
</tr>
<tr>
<td></td>
<td>VAL</td>
<td>160</td>
<td>160.083</td>
<td>100.051</td>
<td>1.6865</td>
<td>1.6856</td>
<td>0.68853</td>
</tr>
<tr>
<td>Bulk mixture of RV and VAL</td>
<td>RV</td>
<td>10</td>
<td>9.9583</td>
<td>99.583</td>
<td>0.58706</td>
<td>0.5894</td>
<td>0.23969</td>
</tr>
<tr>
<td></td>
<td>VAL</td>
<td>80</td>
<td>80.2583</td>
<td>100.32</td>
<td>1.19377</td>
<td>1.1899</td>
<td>0.48578</td>
</tr>
</tbody>
</table>

Form: Formulation, Std: Standard, AD: Amlodipine besylate, VAL: Valsartan, RV: Rosuvastatin

Table 4: Results of intraday, interday precision, and recovery analysis of the method

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Parameter</th>
<th>Level of study</th>
<th>Drug name</th>
<th>S.D.</th>
<th>COV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Precision of AD and VAL</td>
<td>Intraday precision</td>
<td>AD</td>
<td>1.5820</td>
<td>1.5770</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VAL</td>
<td>1.1721</td>
<td>1.1708</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interday precision</td>
<td>AD</td>
<td>1.78789</td>
<td>1.78110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VAL</td>
<td>1.61566</td>
<td>1.62363</td>
</tr>
<tr>
<td></td>
<td>Recovery study of AD and VAL</td>
<td>80%</td>
<td>AD</td>
<td>2.71622</td>
<td>2.61766</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100%</td>
<td>1.2638</td>
<td>1.26468</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120%</td>
<td>2.0012</td>
<td>2.01429</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80%</td>
<td>VAL</td>
<td>1.09145</td>
<td>1.07576</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100%</td>
<td>1.95302</td>
<td>1.93829</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120%</td>
<td>2.1772</td>
<td>2.13954</td>
</tr>
<tr>
<td>2</td>
<td>Precision of RV and VAL</td>
<td>Intraday precision</td>
<td>RV</td>
<td>1.6297</td>
<td>1.6190</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VAL</td>
<td>1.6067</td>
<td>1.5935</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interday precision</td>
<td>RV</td>
<td>1.4446</td>
<td>1.4639</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VAL</td>
<td>1.2356</td>
<td>1.2241</td>
</tr>
<tr>
<td></td>
<td>Recovery study of RV and VAL</td>
<td>80%</td>
<td>RV</td>
<td>1.8841</td>
<td>1.8839</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100%</td>
<td>1.4015</td>
<td>1.3861</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120%</td>
<td>1.3432</td>
<td>1.3254</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80%</td>
<td>VAL</td>
<td>2.02218</td>
<td>2.0087</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100%</td>
<td>1.7501</td>
<td>1.7236</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120%</td>
<td>1.8457</td>
<td>1.8188</td>
</tr>
</tbody>
</table>

SD: Standard deviation, COV: Coefficient of variance, AD: Amlodipine besylate, VAL: Valsartan, RV: Rosuvastatin
rapid quantification of many samples in routine and quality control analysis of tablets. The method also uses a solvent system with the same composition as the mobile phase for dissolving and extracting drugs from the matrices, thus minimizing noise. Thus, the proposed method is rapid, selective, requires a simple sample preparation procedure. Moreover, the lower solvent consumption leads to a cost-effective and represents a good procedure of AD and VAL, and RV and VAL determination in bulk and pharmaceutical dosage forms.

ACKNOWLEDGMENTS

The authors are thankful to Dr. P. Y. Pawar, Principal, Dr. VVPF’s College of Pharmacy, Wlad, and Ahmdnagar, for providing the necessary facilities to carry out the research work and also thankful to Cure Pharma, Pune, for supplying the gift samples of AD and RV, FDC Ltd., Mumbai, for supplying the gift samples of VAL.

AUTHORS’ CONTRIBUTIONS

Both the authors have contributed equally.

CONFLICTS OF INTEREST

The authors declared that they have no conflicts of interest.

REFERENCES