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DESIGNING A VACCINE FOR CANCER: A LOOK INTO DENDRITIC CELL CANCER VACCINE
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ABSTRACT

The fundamental premise behind clinical approaches for dendritic cell-mediated immunization in cancer is that the limiting defect in natural 
antitumor immunity is at the level of antigen presentation. In contrast to vaccines for the prevention of infections, cancer vaccines are administered 
in a therapeutic mode, to eradicate antigen-bearing tumor cells already present in the host. Over the decades, the identification of antigens that can 
serve as targets for immune effectors has resulted in a profusion of strategies for activating tumor antigen-specific immune responses. Therapeutic 
vaccines, unlike prophylactic vaccines for the prevention of infections, all share some basic attributes, the presence of target antigens, and a method 
for delivering the antigen into the antigen-presentation machinery in conjunction with other molecules required to provide T-and/or B-cell activation.
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INTRODUCTION

Dendritic cells (DCs) are potent antigen-presenting cells (APC’s) [1], 
roles of APC in the body are to ingest [2], digest [3], and present antigens 
to other cells of the immune system [4]. Presentation of antigens to 
white blood cells is a crucial step in the development of an adaptive 
immune response [5]; it activates “naïve” [6] or “inert” T cells [7] whose 
T cell receptor is specific for the particular antigen being presented by 
the APC [8]. The cytotoxic T lymphocyte (killer T cell) adaptive immune 
response is the principle way in which tumors can be destroyed by the 
body [9]. Targeting tumor antigens to DCs, either ex vivo or in vivo [10], 
therefore, allow an opportunity to bypass these defects in antigen 
presentation [8], and take advantage of the many specialized features 
of DC as potent APC [9]. It has long been realized that many tumors 
are poorly immunogenic [10]. That is, if they are merely disaggregated 
and reinjected, they frequently grow unabated and do not activate 
a protective immune response [11]. The modified white blood cell 
injections can be used as a potential therapeutic vaccine against lethal 
diseases [12]. If successful, this vaccine will revolutionize the future 
of cancer treatment [13]. The DC cancer vaccine exploits the powerful 
antigen-presenting capacity of the DC and uses it to develop therapeutic 
immunity against cancer-associated antigens [14].

MATURATION OF DCS AND IMMUNOTOLERANCE

DCs are a class of bone-marrow-derived cells arising from lymphoid 
and myeloid hematopoiesis [15] that form an essential interface 
between innate sensing of pathogens and the activation of adaptive 
immunity [16]. Immature DCs are found in peripheral tissues and 
circulation [17]. The concentration of chemokine receptors is increased 
by the DCs on receiving the maturation signals [18]. This, in turn, 
increases the antigen presentation by major histocompatibility complex 
(MHC) molecules and aids in the amplification of T cell responses [19]. 
Further, additional danger signals are required by the DCs to turn them 
to activated form [20]. The maturation of DCs depends on the various 
types of signals for maturation (Fig. 1) [21]. The resultant mature 
phenotype affects T cell interaction and cytokine secretion [22]. Other 
than activation of the immune system, DCs can also produce immune 
tolerance, which can be used as a strategy for the production of a 
successful vaccine [23]. From the previous studies, it is known that 

immature DCs are more likely to exhibit tolerance [24]. Some other 
studies also suggest that immature or not fully mature DCs will not 
produce any desired effect in vaccination [25]. With the help of these 
studies, we can say that DC maturation is most essential to overcome 
immune tolerance and its barriers [26]. In particular, research on DCs 
has recently emerged as a fundamental aspect for the comprehension 
of the mechanisms underlying the pathogenesis of viral diseases, [27] 
as well as for the progress on the development of prophylactic and 
therapeutic vaccines [28]. In addition, the recent advances in DC 
biology have opened perspectives in the research on new adjuvants and 
novel strategies for the in vivo targeting of antigens to DCs, which are 
instrumental in the development of cancer vaccines [29].

ANTIGEN PRESENTATION BY THE DCS

After a DC has ingested and processed an antigen, it must communicate 
its finding to the rest of the immune system [30]. This may be achieved by 
physically bringing the pieces of the antigen to other immune cells [31]. 
However, since other cells do not have ready access to the engulfed 
particle inside the cell, the antigen fragment must be presented on the 
cell surface [32]. One of the ways this is achieved is through antigen 
binding to a special “presenting” molecule, MHC class I [33].

This allows the small morsel of antigen to be held in place on the cell 
surface and gives context to other immune cells, allowing them to 
respond properly [34]. Usually, proteins that APCs ingest (exogenous 
proteins) [35] are presented on MHC class II, not MHC class I; that is, 
MHC class I is reserved for fragments of proteins that cells produce 
themselves (endogenous proteins) [36]. However, APCs have a special 
ability to cross-present exogenous antigens on MHC class I, [37] which 
allows APCs to activate cells that can recognize tumor cells expressing 
tumor-specific antigens in the context of MHC class I [38].

DEVELOPING AN IMMUNE RESPONSE

After a DC has successfully presented an antigen bound to an MHC 
class I molecule on its cell surface, it migrates to a lymph node where 
many other white blood cells are waiting [36]. Here, DCs interact with 
CD8+T lymphocytes (Fig. 2) [37]. DC antigen/MHC class I complexes 
bind with T cell receptors on CD8+T lymphocytes [38]. This contact, 
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in conjunction with other costimulatory and adhesive processes, 
causes CD8+T lymphocytes to multiply and mature into selective 
cellular perforin, commonly known as killer T cells (or cytotoxic T 
lymphocytes) [39]. These cells then migrate from the lymph node back 
into the blood and throughout the body in search of the antigen by 
which they were stimulated [40]. When they find cells that express the 
antigen presented with an MHC class I molecule, they destroy them [41]. 
Since cells normally present parts of their internal proteins on MHC 
class I molecules, cancer cells produce antigens can be recognized and 
destroyed in this way [42].

Most DC-based vaccines [43] are usually composed of the following four 
basic steps (Fig. 3).
1. Collect DCs.
2. Culture DCs in vitro.
3. Expose DCs to the cancer antigen(s) of your choice.
4. Administer the DCs into a patient as a vaccine.

IMPROVING THE VACCINE

At present, mild therapeutic effects of DC vaccines are available [44]. 
Scientists are now looking for new ways to increase this therapeutic 
effect. Some of the concepts and techniques that are being used to bring 
a curative vaccine for cancer closer to fruition are presented below [45].

Gene transduction
In addition to methods that apply the antigen to the DC directly, it is 
also possible to transfer the gene encoding the tumor-specific antigen 
into the DC (Fig. 4) [46]. Such an approach can be beneficial because it 
provides:
1. A continuous production of antigenic fragments
2. An intracellular source of antigen, easily accessible to the MHC class I 

pathway.

Continuous production of antigen allows for prolonged availability for 
loading into the MHC class I pathway [47]. Compared with peptide-
pulsing techniques that provide short-term exposure, antigen gene 
transduction provides long-term exposure [48]. Given that MHC class I/
antigen complexes are unstable and degrade relatively rapidly with time, 
it is believed helpful to have constant antigen present for continuous 
loading onto MHC class I. By providing an intracellular antigenic source; 
gene transduction improves the access of antigen fragments to the MHC 
class I pathway [49]. Exogenous antigen sources, as in peptide pulsing, 
are normally presented on the MHC class II pathway and require cross-
presentation by the DC [50]. However, if the antigen is produced within 
the cell, it will be naturally loaded onto MHC class I without the need for 
the less-efficient cross-presentation process.

To achieve gene transduction, viruses are normally used, [51] one of the 
most effective techniques for DC gene transduction [52] makes use of 
genetically modified adenoviruses [53]. The adenoviral vector boasts high 
transfection rates and allows for several vectors to be introduced into the 
same DC population [54]. In addition, this technique can also be used to 
transduce genes encoding immunostimulatory cytokines that stimulate 
the killer T lymphocyte response (cytotoxic T lymphocyte response) [55].

Gene technology can be united with DC cancer vaccine research; the 
results have been promising [56]. DC vaccine effectiveness could be 
increased by a combination of both antigen and immuno stimulatory 
cytokine gene transduction [57]. The cytokine interleukin 12 (IL-12) was 
chosen for the experiment due to its ability to activate immune cells and 
strengthen the killer T cell response in Mycobacterium tuberculosis [58]. 
Using adenoviral vectors, we can simultaneously introduce a breast 
cancer antigen (ErbB-2/neu) [59,60] and an IL-12 gene into DCs ex vivo 
before administering the vaccine (Fig. 5). The result was a significant 
strengthening of the protective and therapeutic immunity of mice 
against injected breast cancer cells [61].

Likewise, new natural [62,63] and synthetic molecules [64,65] capable 
of restoring and/or enhancing DC activities, often impaired in patients, 

have recently been identified and can be tested for their possible role 
in strategies of immunotherapy of cancer [66]. In addition to this, 
considerable interest has focused on the use of patients’ DCs loaded 

Fig. 2: Response from a dendritic cell to an activated cytotoxic 
T lymphocyte

Fig. 3: The four basic steps in a dendritic cell cancer vaccine

Fig. 1: Origin and development of dendritic cells



29

Asian J Pharm Clin Res, Vol 12, Issue 6, 2019, 27-31
 Vemuri et al. 

with cancer antigens [67,68] as a potentially more effective strategy 
of therapeutic vaccination in cancer individuals [69]. Of particular 
note, DCs are important targets of cancer, and attention should be 
paid to the choice of DCs used in clinical studies [70]. Different types 
of DCs may exhibit not only a different potential in inducing antiviral 
immunity but also a different degree of susceptibility to cancer and 
the capability to transfer the virus to the target cell [71]. Thus, both 
preclinical and clinical studies are needed to evaluate the effectiveness 
of DC-based vaccines in the immunotherapy of cancer [72]. We 
conclude this review by emphasizing that although the possible future 
validation of DC-based vaccines for the immunotherapy of cancer [73] 
will certainly not solve the drastic needs of cancer individuals in the 
developing countries, [74] the progress of the research in this field 
will help us to identify novel and practical strategies for the in vivo 
targeting of the relevant cancer antigens to the right DCs [75]. All this 

will lead to the definition of new cost-effective immunotherapy for 
various types of cancer [76].

CONCLUSION

Although it is too early to determine the ultimate role for cancer 
vaccines, the results do provide an increasingly clear picture of 
the challenges that require attention. First, it will be necessary to 
identify from among the many strategies a few vaccines with enough 
promise to warrant large-scale clinical trials. This will require novel 
clinical trial designs and intermediate markers of activity such as 
immunologic assays to determine which induce the most potent 
antigen-specific immune responses. Recent attempts to reach a 
consensus on the immune assays to use and how to interpret them 
should simplify comparison across various studies. Second, the level 
of immune response detected by these assays is still fairly low. If one 
was to assume that the magnitude of the T-cell response necessary to 
clear viral infections is similar to the magnitude required to destroy 
tumors, then most cancer vaccines activate T-cell responses two or 
more orders of magnitude less than is necessary. Third, tumors 
possess a variety of mechanisms for evading even a high-level T-cell 
or antibody response. Finally, before a vaccine can be administered 
to patients, it will require considerable regulatory scrutiny to ensure 
that it is safe and effective. Although the regulatory requirements 
for infectious-disease vaccines have been honed over many years, 
the use of cellular vaccines poses new issues for the Food and Drug 
Administration and other regulators.
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Fig. 4: Using viral gene transduction to introduce antigen genes 
into a DC

Fig. 5: Successful transduction of breast cancer antigen, ErbB-2/neu, and interleukin-12  genes into dendritic cells (DCs) before 
administering the DCs as a vaccine to induce protective and therapeutic immunity against injected breast cancer cells
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