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ABSTRACT

Drug discovery is said to be a multi-dimensional issue in which different properties of drug candidates including efficacy, pharmacokinetics, and 
safety need to be improved with respect to giving the final drug product. Current advances in fields such as artificial intelligence (AI) systems that 
refine the design thesis through report investigation, microfluidics-assisted chemical synthesis, and biological testing are now giving a cornerstone 
for the establishment of greater automation into detail of this process. AI has stimulated computer-aided drug discovery. This could likely speed up 
time duration for compound discovery and enhancement and authorize more productive hunts of related chemicals. However, such optimization also 
increases substantial theories, technical, and organizational queries, as well as suspicion about the ongoing boost around them. Machine learning, in 
particular deep learning, in multiple scientific disciplines, and the development in computing hardware and software, among other factors, continue 
to power this development worldwide.
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INTRODUCTION

Drug discovery
The process of Drug Discovery affects the whole Pharmaceutical sector 
including all the phases such as a preliminary phase of research from 
target Discovery and validation to the discerning of molecules. A variety 
of streams can be used to initiate the identification of small therapeutic 
molecules [1]. New research can lead to awareness of different diseases 
with different routes of drug administration and can be developed to 
take part in pharmaceutical companies to run large-scale trials and 
other waste programs, in order to identify the targeted molecular 
compounds. This process is mostly performed at the beginning of lead 
Discovery, with the prospect of taking identified compounds in the right 
way through preclinical and clinical trials [2,3].

The steps involved in the process of drug discovery
Step 1 – Target identification and validation
The first step involves target identification and validation as it starts 
the whole drug discovery process. The basic targets for therapeutic use 
are cellular on modular structures which materialize naturally and take 
part in prime roles in pathogenicity [3]. The target molecule should be 
conveniently safe and efficacious and should meet the clinical demands 
of the patient to get the desired drug molecule after identification of the 
drug target system approach should be performed in the mode of action 
of the API to be qualified for efficacy (Fig. 1).

Step 2 – hit identification and validation
The next step is to recognize whether the small molecule leads have the 
desired effect against the identified targets. Hits can be identified using 
several techniques, such as high-throughput screening, knowledge-
based approaches, and virtual screening. Validation of hits is important 
during the initial stage of screening.

Step 3 – moving from a hit to a lead validation
The aim now is to clarify each hit series to develop more selective 
compounds based on the various series of hits introduced so far. It is 
particularly important to work on multiple series in random order since 
some successful series will fail due to unique characteristics. Focusing 
on multiple series structurally, different sets of hit series will help to 
offset this possibility.

Step 4 – lead optimization
To develop a preclinical drug candidate, it is necessary to improve on the 
deficiencies of lead compounds and maintain their desired properties. 
Using this step, you can determine whether your drug metabolizes 
in the right area of your body, or whether you have any current side 
effects of concern. An integrated approach is recommended for the 
same. Bringing together experts in computational chemistry, medical 
chemistry, drug metabolism, and other fields will allow them to provide 
unique insight into this late stage of the process [4-7].

Step 5 – late lead optimization
Before progression to preclinical and clinical trials, late-stage 
optimization, in which further pharmacological safety of a lead 
compound is assessed, is a vital step. A drug’s efficacy, pharmacokinetics, 
and safety will be more likely to be compromised later in development 
if this phase is ignored. As part of safety optimization, the aim is 
to identify and progress leads with the best overall safety profile, 
remove the most toxic leads, and establish a well-defined hazard and 
translational risk profile necessary for further in vitro testing. By 
thoroughly calculating the risks at this point, more opportunities can 
be taken when investments are made into leads. Further, if the drug 
is approved for development it is passed to perform preclinical and 
clinical trials [8].

Artificial intelligence (AI)
AI and the area of machine learning (ML) are the study of the processes 
and viability of sanctioning machines to cleverly execute intelligent 
tasks, without obviously being programmed for those tasks [9,10]. At 
prresent, AI systems have approached or excelled human performance 
in multiple tasks, such as game playing and image recognition, but these 
have generally been quite limited and focused domains. However, AI in 
its varied forms is today effectively used across several domains and for 
complex tasks, such as robotics, speech synthesis, image analysis, and 
logistics, as well as its application in the design of molecules (Fig. 2).

Since 1960, medicinal chemistry has been applied to AI in different 
forms and with an assorted degree of progress in designing compounds. 
It involves supervised learning, in which labeled training datasets 
are used to train models broadly. One example is the quantitative 
structure-activity relationship (QSAR) approach, which is frequently 
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used to predict properties, such as log P and solubility, for chemical 
structures  [4]. Unlike unsupervised learning, which is not based on 
labels, this is also popular within medicinal chemistry, with examples 
such as hierarchical clustering, algorithms, and principal components 
analysis used broadly to examine and break down large molecular 
libraries into smaller collections of indistinguishable compounds [11].

AI neural networks
AI in drug discovery
The Research and Development (R and D) cycle that encapsulates: 
Problem analysis, grounding, design, implementation, and evaluation, 
for innovative small-molecule drugs as an example are required to 
overcome obstacles, such as high marketing cost, limited success rates 
in clinical trials, and overall prolonged R and D cycle time. The R and D 
productivity of drugs (for drugs of small-molecule) in the medical care 
industry continues to dwindle, despite expenditure records. In addition, 
partially because of the saturation of the market, it has been challenging 
to bring novel chemical matter through a complex approval process, 
and partly because people are willing to pay in both developed and 
developing markets.

In recent times, scientists have more information than ever before 
on an assortment of topics that pertain to the subject, outperforming 
the ability of most to properly parse and amalgamate into their own 
workflows and research objectives [12,13]. One solution to this kind 
of complication is to outsource our reasoning to machine intelligence 
when it comes to the analysis of multisource and multidimensional data. 
ML is a type of AI that enhances the accuracy of predictive outcomes and 
offers fresh opportunities for small-molecule drug discovery [16]. ML 
approaches that might be considered instances of weak AI have made 
remarkable progress, with blossoming in their fundamental algorithms 
and application [14-17].

AI has recently emerged as a hot topic in the pharmaceutical industry. 
AI in Biopharmaceutical Company’s initiative subsistence rose at a 
summer workshop in 1956 at Dartmouth College, The Dartmouth 
Summer Research Project on AI was a groundbreaking event for 
AI. During the 1970s, a number of AI-based diagnostic tools were 
developed, such as PIP, Internist-1, MYCIN (an early expert system, or AI 
program, for treating blood infections), and Common Attribute Support 
Network. In 1985, the R1 (eXpert CONfigurer, for expert configure) 
program was a production rule-based system that achieved 95–98% 
accuracy and was blown to a million-dollar industry [18]. In the course 
of the early 1990s, AI exponentially grew in data communication 
(Internet), cloud technologies (Apps, Elastic Computing cloud, etc.), 
high-performance cloud computing, and big data storage. In the chess 
match between Garry Kasparov and an IBM supercomputer called Deep 
Blue, Deep Blue defeated Kasparov in 1997 which put AI in the limelight 
[19]. Over the past decade, AI has expanded exponentially, and there 
has been a significant increase in investments in AI for drug discovery. 
A firm in Silicon Valley called Andréessen Horowitz recently announced 
a 450 million dollar bio investment fund, with AI as a major focus area.

APPLICATIONS OF AI IN OTHER PHARMACEUTICAL SUBFIELDS
AI in molecular designing technique
In drug discovery, computer-aided drug design is becoming ever 
more important for the cost-effective identification of promising drug 
candidates [20,21]. The scientific methods presented here are of 
relevance to limiting the use of animals in pharmacological research, 
for aiding the rational design of novel and safe drug candidates, and 
for repositioning marketed drugs, supporting medicinal chemists and 
pharmacologists during the discovery phase of new drugs. Here are 
some of the commonly used molecular designing techniques (Fig. 3).

QSAR/quantitative structure-property relationship (QSPR) and 
structure-based modeling with AI
Over the past 50  years, QSAR/QSPR modeling has improved greatly. 
Statistical models such as absorption, distribution, metabolism, 
excretion, and toxicity (ADMET) provide accurate predictions of 

biological activity as well as pharmacokinetic parameters like ADMET 
[22,23]. When modeling ligand-based QSAR/QSPR, the structural 
characteristics of molecules (such as pharmacophore distribution, 
physicochemical properties, and functional groups) are commonly 
converted into machine-readable numbers using molecular descriptors. 
The range of hand-made molecular descriptors is wide, which aims 
to capture different features of the key chemical structure [24-26]. 
Conventionally, QSAR/QSPR have focused on simplified models, such 
as linear regression and k-nearest neighbors. However, in the last 
decade, ML techniques have become widely available, such as support 
vector machines (SVMs) and gradient boosting methods, which aim to 
reveal complex and potentially nonlinear relationships between the 
chemical structure and its physicochemical/biological properties, often 
at a charge of accountability. Over time, deep learning has grown to 
become a popular part of ML [27]. Autoencoders, recurrent systems for 
sequence, deep and adaptive network architectures, involving Chemo 
informatics Artificial Neural Networks reached their peak during the 
1990s, which was when most of the current concepts were pioneered. 
It was not until deep networks won the 2012 Merck Molecular Activity 
Challenge that they achieved their ultimate breakthrough. Though it 
has not been proven that the latest type of model is superior to other 
techniques (such as gradient boosting machines), the same set of 
descriptors are used. Using the same set of descriptors, deep learning 
has several advantages. However, the most important thing during 
training is that deep networks can extract features automatically. To 
build internal context-specific representations of molecular structure, 
message-passing techniques are used, for example, Graph Neural 
Networks or Recurrent Neural Networks, in more detail   [28]. The 
latent representations of atoms and bonds are learned during the 
training process for graph neural networks. The advantages of deep 
learning approaches are that they can be applied to modeling tasks 
for which conventional descriptors were not originally designed. 
Several examples include the modeling of peptides, macrocycles, 
and proteolysis-targeting chimeras. Furthermore, multiple-layer 
architectures can also be applied to multitask learning, which has 
the goal of identifying a common internal representation in order to 
address a set of related endpoints. Multitask learning based on AI could 
be a more efficient and effective way to use correlated data than prior 
imputation, especially in scenarios where the molecular library is not 
tested exhaustively on all endpoints [29,30].

In the years before deep learning became popular, multi-output QSAR 
modeling aimed at linking a set of predefined chemical descriptors 
to observable endpoints was being explored. In spite of the promise 
of multitask learning, performance improvements over single-task 
models have only been modest so far [31,32].

In contrast to traditional QSAR, structure-based prediction of protein-
ligand interactions for the same targets has made remarkable progress. 
The classical method of modeling a protein-ligand complex with partial 

Fig. 1: Steps involved in drug discovery [3]
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least squares or multiple linear regressions takes into consideration 
the contribution of individual descriptors (e.g., physicochemical 
properties) for a target property [33]. Random forests or SVMs emerged 
in 2000, becoming popular by the early 2010s. These models are often 
used with an array of descriptors such as protein-ligand atom pairs, 
shape data, or basic atomic interactions, which are often combined with 
nonlinear QSAR models that are more flexible. In the same manner, as 
ligand-based research, this subfield also benefited from deep learning. 
Using a convolutional neural network, the techniques before were 
developed for bioactivity prediction based on advances in computer 
vision and image recognition [34]. Many other approaches use graph-
based approaches in conjunction with distance and angle-based feature 
selection. Tests based on sets from a database drawn pseudo-randomly 
may result in overconfident results regarding model evaluation. Other 
options such as scaffold-based or time-based splits are potentially more 
informative as they try to resemble the course of a lead optimization 
project [35].

De novo drug design with AI
In drug discovery, one of the most challenging computer-aided tasks is 
the creation of new molecules with desired pharmacological properties 
from scratch. This is due to the unique chemical space of molecules 
with such properties [36,37]. In de novo molecule generation, there is a 
danger of a series of combinative explosions because of the enormous 
amount of different atomic types and molecular topologies a researcher 
could explore. As a result, ligand-based approaches, structure-based 
approaches, or a combination of both approaches may be used based 
on the information aided to guide the de novo design process.

The ligand-based methodology can be grouped into two main 
categories:
(i) A rule-based approach consists of a set of rules for building molecules 
from reagents or molecular fragments [38]. For the process of stepping 

through analogs of active leads to their maximum potency, the Topliss 
scheme is one of the forerunners of modern rule-based de novo design [10].

Modern approaches to optimization use a set of molecular 
transformations, such as matched pairs of molecules, or rules-of-
thumb for functional groups, and molecular framework modification. 
Synthesis-oriented approaches include rules for building block 
assembly and ligand generation in particular [39]. These approaches 
can be used to design synthetically accessible libraries, such as BI 
CLAIM and CHIPMUNK. Hybrid approaches such as Testing Operations 
Provisioning and Administration System, Difference of Gaussian, 
and DINGOES, have been developed to guide the generation of novel 
compounds, since the late 1990s, by concurrently maximizing both, their 
similarity to known bioactive ligands and the chemical synthesizability 
of the designs [40-44].

(ii) Rule-free approaches have no rigid construction rules, but rather 
aim to generate molecules with desired properties without the need for 
molecular construction rules. Molecular representations are learned 
by learning generative deep-learning models, which sample new 
molecules from the latent molecular representation. Although these 
approaches have gained popularity within a previous couple of years, 
the concept of sampling from a numerical presentation of molecules for 
de novo design goes back to the “inverse QSAR” problem formulated in 
the pioneering work of Skvortsova and Zefirov in the early 1990s [45]. 
The present QSAR model, anchored by inverse QSAR, not only detects 
the descriptive values which correlate to the desired property but 
also utilizes this information for molecule production. In contrast, the 
latter method poses several obstacles, such as the existence of multiple 
solutions for each property and the difficulty of reverse-decoding 
cogent structures from molecular descriptors. To address a few of these 
problems, deep learning can be used to generate new compounds by 
selecting molecules from a known distribution and then designing the 

Fig. 2: Artificial networks including method domains and classification of ANNs-Artificial Neural networks [11]

Fig. 3: Artificial intelligence applications in various subfields of the pharmaceutical industry, ranging from drug design to drug screening [19]
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fundamental distribution [46]. The most common implementation is 
Simplified Molecular Input Line Entry System (SMILES) paired with 
generative models borrowed from natural language processing. It 
teaches them how to use the SMILE “syntax” (i.e., create a chemically valid 
string), based on chosen “semantics” (e.g., bioactivity or other desired 
molecular property). They generally rely on recurrent neural networks, 
combined with transfer or reinforcement learning [47]. There have also 
been a variety of other deep-learning-based generative learning models 
reported, such as variational autoencoders and generative adversarial 
networks, as well as graph-convolution models. Some recent papers 
have proposed conditional generative design approaches, which take 
advantage of supplementary factors steering the design, such as three-
dimensional shape, drug-likeness, synthesizability, and molecular 
descriptor values [48]. Elucidating balanced objective functions that 
enable intricate and constrained multi-parameter optimizations will be 
a major challenge in the future, analogous to those found in Pareto or 
desirability-based approaches that are classic in drug discovery [50,51].

As a result of the rapid development of generative neural networks, 
the number of ligand-based design methods has risen dramatically. In 
addition to neural generative models, GuacaMol and MOSES provide 
a set of metrics that can compare them, as well as more traditional 
models (like genetic algorithms)[52]. de novo design tools are generally 
more difficult to evaluate retrospectively than predictive methods, but 
some of the most commonly used metrics include:
1.	 Rationality of the created molecular representations and novelty of 

the simultaneous molecules
2.	 Chemical and biological resemblance with the known compounds, 

and
3.	 Scaffold and fragment diversity.

The advantages of rule-based and rule-free approaches differ. The rule-
based methods use preexisting knowledge, such as building blocks and 
reaction rules, to generate molecules that are often freely synthesizable 
and have the desired physicochemical properties. Hard-coded 
rules and library selections, however, play a role in influencing the 
chemical diversity of the designs. Theoretically, rule-free approaches 
learn straight from the data without requiring hard-coded design or 
similarity rules, thereby permitting a wide exploration of the chemical 
space. But to the disadvantage, this freedom of exploration endangers 
the generation of compounds that are more difficult, if not impossible, 
to synthesize. Lately, a combined strategy was demonstrated to be 
feasible for designing bioactive molecules in a rule-free fashion, while 
simultaneously retaining synthesizability within a microfluidics system, 
using predefined virtual reactions [53].

The majority of deep-learning-based de novo design studies, till now, 
have concentrated on ligand-based approaches. Research directed at 
orphan receptors and hitherto unexplored macromolecules through 
structure-based generative design has great potential. Based on the 
best knowledge known, deep learning has not yet heavily invaded 
these approaches that utilize information about the ligand-binding 
site (e.g., fragment linking or growing) [54]. In the meantime, prime 
developments in ligand design have been made based on the shape and 
properties of the binding pocket.

Automated synthesis planning with AI
The fragments of today, the drugs that treat diseases, the fertilizers 
that safeguard our crops, the products that make life accessible are 
becoming rapidly worldly-wise and refined thanks to advancements 
in chemical synthesis. As tools for synthesis upgrades, molecular 
designers can be valiant and innovative in the way they outline and put 
together the molecules [55,56]. A variety of devices combining chemical 
synthesis and data science have come to the forefront in recent years, 
including robotics for autonomous or high-throughput synthesis, 
as well as algorithms for retrosynthesis and reaction prediction. 
Recently, progress has been made in retro-synthesis logic, predicting 
reactivity, and chemistry automata, with assurance from contributors 
in several fields. Chemical synthesis in the information era guarantees 

to increase the quality of the molecules of the future with help of data-
harnessing and automation. Automation molecule synthesis involves 
three main components: Retrosynthesis, reaction prediction, and 
automated synthesis. The following topics describe how the strategy 
of multistep synthesis can be distilled into a logic that can be taught to 
a computer. Various tools and models are implemented in the part on 
reaction prediction, including those for developing reaction conditions, 
catalysts, and even the most recent alterations based on the abundance 
of data sets and census tools such as ML [57-60].

Synthesis planning with AI has a well-of past, in 1970 in the field of 
computer-aided retrosynthetic prediction. Improved computational 
facilities, the surfacing of big data, and the advancement of novel 
algorithms for deep learning and expansion have arisen in a revival of AI 
for synthetic organic chemistry [61]. In retrosynthesis, where the main 
aim is to periodically design efficient synthetic pathways for a molecule 
of the concert, rule-based techniques are undoubtedly beneficial. These 
aim to stipulate retrosynthetic pathways with the help of reaction 
mechanism encoding and skeletal building. One of their main curbs is 
their reliance on direct chemical changes/reactions. These generally 
demand physical establishment and administration. The latest drawn 
inspiration of the field is from natural languages processing techniques, 
such as sequence-to-sequence models and transformer models [62,63].

Forward synthesis planning differentiates itself from retrosynthesis. 
While the final might be explainable with the help of existing reaction 
databases, forward synthesis would be in need of data from reactions 
that give no product though. The present chemical reaction databases 
are heavily distorted regarding productive reaction data. There is an 
essential call for additional data, like experimental conditions (e.g., 
solvent and temperature) or side-product information. With the goal 
of addressing some of these disadvantages, several measures have been 
taken to develop known reaction databases with negative reaction 
results, and therefore, design the latest customized data collection for 
automated synthesis planning [64].

THE RISE OF AI IN THE DRUG DISCOVERY MARKET

The biopharmaceutical sector offers stimulating opportunities for 
advancements in AI. It is no secret that the biopharmaceutical industry 
is working hard to leverage AI to improve drug discovery, decrease costs 
for R and D, reduce failure rates, and ultimately develop superior drugs 
[65]. Recent years have seen an evolution of AI-based start-up companies 
devoted to drug discovery as a result of the fast development of ML 
algorithms and the availability of immense statistics in life sciences. 
Several notable AIbio pharmaceutical alliances were announced in 
2016-2017, such as Pfizer and IBM Watson, AstraZeneca, Abbvie, 
Merck, Novartis, GSK Sanofi Genzyme, and Recursion Pharmaceuticals, 
and Exscientia [66].

The top biopharmaceutical company’s current AI initiatives include:
a.	 Mobile platforms - the caliber to recommend patients, by the means 

of real-time data collection and thus improving patient outcomes
b.	 Personalized medicine  -  the capability to evaluate a big database 

of patients so as to recognize cure alternatives using a cloud-based 
system as personalized medicine

c.	 Acquisitions galore - new startups are combining AI and healthcare 
to foster the innovation requirements of large biotech firms

d.	 Drug Discovery -  in conjunction with software companies, pharma 
companies are trying to implement the most cutting-edge technologies 
in the costly and extensive process of drug discovery [9,62].

Based on the growth of deep learning applications in drug discovery and 
the fact that these methods avail from large training sets, conscientious 
data curation and proper benchmarking of newly developed models 
are mandatory [67]. The availability and size of chemical compound 
libraries have improved over the past few years, with databases such 
as ZINC and European Molecular Biology Laboratory representing 
a commonly-used starting point for ligand-based projects. A  similar 
trend was observed for structure-based modeling, for which databases 
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such as protein database bind and binding database provide highly 
detailed structural information on protein-ligand complexes, as well as 
their associated bioactivity data [68,69].

CHALLENGES OF AI IN DRUG DISCOVERY

The drug discovery and development process are very lengthy, highly 
expensive, and extremely complex in nature. Conventional methods 
involve expensive techniques and take long years to launch a new 
drug in the market. With the dawn of new tools and technologies in 
the field, the major challenge is to reduce the time and cost required 
for the development of a new drug. These composite problems involve 
extremely high computations and can be addressed with the help of 
techniques based on AI [70].

A well-known drawback of deep learning is its poor performance in 
medium-to-low data scenarios. Further insight might be provided 
into these scenarios by chemogenomic-based approaches alongside 
exploiting additional genomic or biological interactome data sources 
[71]. In addition, recent advances in “few-shots” learning (i.e., a set of 
approaches that can use prior knowledge to obtain better generalization 
when data is scarce) and meta-learning (i.e., a branch of metacognition 
that aims to develop a set of learnable frameworks that can quickly 
adapt to new, unseen tasks) hold promise in alleviating some of these 
issues [72,73]. Data-driven approaches for molecular predictions of 
properties are in contradiction to techniques that are physics-based 
and are also fundamentally limited in their ability to extrapolate and 
make reliable predictions for the unseen classes of compounds. ML 
approaches are physics-inspired and additional active learning strategies 
(i.e., approaches where for improvised generalization the model has a 
role in requesting specific training data) provide supplementary tools to 
overcome these limitations [74].

AI techniques could offer partial solutions to these problems by 
providing intelligible interpretations of the decision-making process 
undertaken by deep learning approaches. Continued development of 
feature attribution techniques (i.e., approaches aiming to highlight the 
comprehensive importance of an input) instance-based elucidations 
(e.g., counterfactuals, model-generated examples that are conditioned 
on user-defined queries), and attention-based networks will help 
narrow the gap between deep learning and drug-discovery specialists. 
Hence, close collaboration between these fields is crucial [75].

Another commonly-claimed drawback of deep-learning approaches is 
their high computational cost. Deep learning typically entails longer 
training and evaluation times than many other machine-learning 
approaches without specialized hardware such as consumer-grade 
graphical processing or tensor-processing units [76]. Deep-learning 
models can be learned in an online setting by naturally taking advantage 
of its most popular training strategy, that is, stochastic gradient-descent 
optimization. This is advantageously scaling linearly with respect to 
the size of the training dataset, and thus it does not require the latter 
to be entirely loaded into the system’s memory. Many argue that the 
capability to train deep learning models stochastically on sequential, 
random, batches of data can make them more suitable than other 
alternatives in big data scenarios [77-80].

FUTURE BEHOLD

Reports have shown that a few companies are engaging in silico synthetic 
planning into their whole course, accessing target molecules through 
the use of AI and ML; this has proven to be a beneficial technique in 
predictive chemistry and synthetic planning of small molecules [93]. 
ML for Pharmaceutical Discovery and Synthesis (MLPDS) consortium, 
composed of MIT and 13 chemical and pharmaceutical companies, is 
developing and evaluating a data-driven synthesis planning program. 
The integration of predictive models into the medicinal chemistry 
synthesis workflow, the use of these models in MLPDS member 
companies, and the outlook for this field [81].

Predictive deep learning tends to require significantly more human 
expertise in many practical scenarios compared to other, more 
thoroughly tested approaches. While one can train a well-performing 
random forest model with a relatively small effort for hyperparameter 
tuning, our understanding of contemporary deep learning approaches 
is not yet at the level of reliable defaults, although recent theory suggests 
that this may change soon. Deep neural networks might provide the 
right answers for misleading reasons and tend to produce overly 
confident predictions, even when these are evidently wrong [82,83]. 
This is further exacerbated in the context of property prediction in 
drug discovery, as experiments under similar conditions can provide 
significantly different measurements. This drawback might be alleviated 
in the next few years with the wider adoption of uncertainty estimation 
techniques, either with deep learning approaches that have uncertainty 
directly embedded into their design, such as Bayesian neural networks, 
or post hoc techniques such as ensemble learning [84].

Chemical reaction prediction problems can be viewed as graph 
transformation problems as a way to directly rank products. In recent 
years, quantum mechanics has led to the development of approaches 
that make use of first-principle calculations (e.g., density functional 
theory) to assess the energy barrier of a reaction. The accurate 
prediction of energies and forces through quantum-mechanical ML 
might help bridge this gap soon. Concerning template-free forward 
synthesis prediction, natural language processing approaches based 
on the transformer or recurrent neural network architectures are 
also becoming popular [85-90]. These have reported a top-1 reactant 
accuracy above 90%. In terms of the future, Friedrich Rippmann sees 
the greatest opportunity as drug discovery and attrition rates being 
reduced. This would result in more novel drugs being available to 
patients faster. AI has great prospects for drug discovery, but for now, 
the cost of implementing it is prohibitive. Increasing competition will 
bring down costs, opening up exciting possibilities for discoveries in a 
variety of fields [91-100].

CONCLUSION

The newfound interest in explainable AI, with methodologies such 
as feature attribution, instance-based molecular counterfactual 
explanation, and uncertainty estimation, will increase the acceptance 
of AI-supported drug discovery. AI is still far from perfect, and there are 
still areas in which data cannot be analyzed, which makes combining 
human and machine intelligence an effective strategy. The current 
trend suggests that these methods will be increasingly accessible in the 
coming future, with the continued development of general high-level 
research and deployment software packages, as well as comprehensible 
documentation. Recently, AI has captured the attention of many people 
and has been extensively used in drug discovery. It is possible to 
expect improvement in the future if the chemical representation can 
be adapted to the problem at hand. AI for drug discovery is strongly 
benefited from open source implementations, which allow access to 
software libraries that allow neural networks to be implemented. The 
development of robotics will be particularly vital to this progress.
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