ASIAN JOURNAL OF PHARMACEUTICAL AND CLINICAL RESEARCH

ISOLATION AND STRUCTURE ELUCIDATION OF ERYTHRIN AND BIOPROSPECTION STUDIES OF ROCCELLA MONTAGNEI EXTRACT

JEYA PREETHI SELVAM¹, KALIDOSS RAJENDRAN¹, SHENBAGAM MUTHU¹, PONMURUGAN PONNUSAMY^{1*}, ARUMUGAM P²

¹Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India. ²Armats Biotek Training and Research Institute, Chennai, Tamil Nadu, India. Email: drponmurugan@gmail.com

Received: 02 March 2022, Revised and Accepted: 05 April 2022

ABSTRACT

Objectives: Lichen is a stable mutually beneficial organism. Composed of fungi, a Mycobiont is united with algae, a phycobiont or cyanobacteria. Since the ancient period, the extract derived from Lichens is utilized in the medication of numerous diseases. An attempt was made to isolate and structure elucidation of the erythrin, a biologically active compound from corticolous lichen *Roccella montagnei*, and analyze the antimicrobial and antioxidant activities of lichen's acetone extract under *in vitro* conditions.

Methods: An attempt was made to isolate and characterized the erythrin, a biologically active compound from corticolous lichen *R. montagnei* using ultraviolet, Fourier transform infrared, High-performance liquid chromatography, nuclear magnetic resonance, and gas chromatography–mass spectrometry techniques. The antimicrobial activities of lichen extract were evaluated against six pathogenic microorganisms using the standard disc diffusion technique. For *in vitro* antioxidant activity, the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) scavenging method, hydrogen peroxide scavenging method, and phosphomolybdenum assay were done.

Results: The outcomes show that the lichen extract has the maximum effective antibacterial activity compared to antifungal activity against pathogenic microorganisms. The maximum zone of inhibition was recorded in *Escherichia coli* (8.75±0.61 mm). Among fungal pathogens, the extract inhibited the growth of *Candida albicans* with a maximum inhibition zone of 7.50 ± 0.52 mm. *In vitro* antioxidant activity, the DPPH scavenging method, IC_{50} value of lichen extract, and ascorbic acid were found to be 45.70 µg mL⁻¹ and 39.74 µg mL⁻¹, respectively. In the hydrogen peroxide scavenging method, it was observed that the IC_{50} value of lichen extract, ascorbic acid, and rutin were found to be 39.39 µg mL⁻¹, 40.66 µg mL⁻¹, and 45.58 µg mL⁻¹, respectively. The maximum antioxidant content of 44.66 mg/g ascorbic acid equivalents was observed in the 100 µg mL⁻¹ lichen extract in the phosphomolybdenum assay. Total phenolic content was higher in lichen extract with 214.84±14.84 mg gallic acid equivalent (GAE/g lichen extract).

Conclusion: The present study did the isolation and structure elucidation of erythrin obtained from *R. montagnei* from Anaikatty and reveals that the lichen extract has the potential to control the human pathogenic microorganisms in the future and the study also suggested that the lichen extract possesses active antioxidant substances to scavenge free radicals.

Keywords: Lichens, Roccella montagnei, Erythrin, Lichen extract, Antimicrobial, Antioxidant activity.

© 2022 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2022v15i6.44561. Journal homepage: https://innovareacademics.in/journals/index.php/ajpcr

INTRODUCTION

A unique kind of extracellular specialized metabolites from lichens, which are known as lichen metabolite. A wide variety of biological actions is done by lichen metabolites such as antibiotic, antiinflammatory, antiviral, anti-pyretic, analgesic, anti-proliferative, and cytotoxic effects [1]. According to the Botanical Survey of India, in India, there are about 2900 species of lichens are recorded which is 14.8% of the total world's known species. In India, lichens are utilized in folklore as medicine and many Indian medicinal practitioners used lichen as a herb during the medieval period [2]. Several infectious bacteria have evolved into drug-resistant forms. This issue is being addressed through the development of new antibacterial drugs. Numerous lichens are screened for antibacterial activity. The major factor for many chronic and degenerative diseases such as diabetes and cancer is oxidative stress, which is due to the release of free radicles. Production of the free radicle is prevented by antioxidants. One of the natural sources of antioxidants is lichen. Roccella montagnei is a fruticose lichen that is often found in India's mangroves. In this study, R. montagnei was collected in a high altitude region, and as a result of the stressful physiological adaptations they evolved, they show a difference in phytochemical components than other typical lichens. In this work, we isolated and characterized erythrin, a bioactive compound, and did bioprospecting assays on lichen extract from

R. montagnei collected in Anaikatty, the foothill of Nilgiri Biosphere Reserve, Tamil Nadu.

METHODS

Collection and identification of lichen material

R. montagnei thalli were collected in the month of July in Anaikatty, Coimbatore District, Tamil Nadu. It is located at an altitude of 2130 m above mean sea level, a latitude of 10°14'17.2" N, and a longitude of 77°29'21.06" E at the foothills of Nilgiri Biosphere Reserve, Tamil Nadu, the part of Western Ghats, India. The collected material is identified morphologically by the method described in Awasthi's lichen identification manual [3]. The obtained material was carefully cleaned with distilled water and air-dried. The dry material was weighed and ground into powder.

Extraction

Dried lichen material was ground into a powder and then extracted for 36 h in an extractor with acetone (2.5 *I*). To obtain the 7.5 g of acetone extract, the extract was evaporated in a rotatory evaporator and dried using a vacuum pump.

Isolation of compound

The lichen substances were eluted using a column chromatographic procedure. The acetone extract was mixed with silica gel G (60-120

mesh) and applied in a silica gel G loaded column. The mobile phase solvent gradient containing n-hexane to ethyl acetate (10:0–10:20) was used. The eluent was condensed and lichen substance was identified using TLC and similar fractions were pooled and concentrated. The erythrin containing fraction was purified and subjected to spectroscopic analysis (ultraviolet [UV], Fourier transform infrared [FTIR], and ¹H and ¹³C nuclear magnetic resonance [NMR]).

Evaluation of antimicrobial activity

The antimicrobial activity was determined using the disc diffusion technique, as described by [4].

Media preparation

Bacterial culture is performed on nutrient agar medium, while fungal culture is performed on potato dextrose agar media [5].

Source of microorganisms

The bacteria strains used in the biological tests were *Escherichia coli* (Microbial Type Culture Collection [MTCC] 732), *Staphylococcus aureus* (MTCC 3160), and *Vibrio cholera* (MTCC 3901), whereas the fungal strains were *Aspergillus niger* (MTCC 10180), *Penicillium citrinum* (MTCC 3234), and *Candida albicans* (MTCC 183), obtained from the Institute of Microbial Technology's MTCC in Chandigarh, India.

Antimicrobial activities

The antimicrobial activity of a sample was determined using the disc diffusion technique. 30 ml of nutrient agar (bacteria) medium and potato dextrose agar (Fungi) medium were poured into the Petri plates. The test microorganism was evenly inoculated on a Petri plate. The discs were loaded with 50 μ l, 100 μ l, and 150 μ l of sample and 30 μ l of Chloramphenicol (25 mg/ml distilled water), a standard solution for bacteria, and 30 μ l of Fluconazole (25 mg/ml distilled water), a standard solution for fungus. Bacterial strains were incubated at 37°C for 24 h, whereas fungal strains were cultured at 37°C for 48 h. Each sample was tested 3 times.

In vitro antioxidant activity

2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging activity

The radical scavenging activity of DPPH was determined using the approach of [6], in summary, a 2 ml aliquot of DPPH methanol solution 25 g/ml was added to a 0.5 ml sample solution at various dosages. The mixture was quickly mixed and allowed to stand at room temperature for 30 min in the dark. A spectrophotometer was then used to measure the absorbance at 517 nm. The stronger the free radical scavenging activity, the lower the absorbance of the reaction mixture. By graphing concentration against percentage inhibition, the percentage inhibition of *R. montagnei* acetone extract was determined.

Hydrogen peroxide scavenging activity

Using the technique of, determining the hydrogen peroxide scavenging activity of lichen extract [7]. In triplicate, take 100 µl of plant extract and standards (BHT and Rutin). 600 µl of hydrogen peroxide solution should be added to the plant sample. Fill each test tube to a volume of 4 ml with phosphate buffer. As a negative control, an identical reaction mixture without the sample is used. Incubate all of the test tubes at room temperature for 10 min. Compare the absorbance of hydrogen peroxide at 230 nm to that of a blank (phosphate buffer). The following formula is used to determine the hydrogen peroxide scavenging activity.

Formula

Radical scavenging activity (%) = AC-AS/AC × 100

Where, The absorbance of the reaction mixture (in the presence of the sample) is denoted by AC = control and AS = sample.

Statistical analysis

Three separate experiments were carried out in triplicate. The quantity of sample required to inhibit free radical concentration by 50%, $IC_{so'}$ was visually calculated using the Ms-Windows-based GraphPad Instat (version 3) tool. The results were shown graphically/mean±standard deviation.

Phosphomolybdenum assay

Evaluate the antioxidant activities of lichen extract using the phosphomolybdenum method [8]. In triplicate, add a standardized concentration of sample solution to test tubes. A reagent solution of 1 mL should be added. The standard will be a reaction mixture without a sample and the absorbance of the mixture at 765 nm will be measured against a blank. The findings were expressed in terms of ascorbic acid equivalents per gram of extract.

Total phenolic content determination

The plant's total phenolic content was determined using a significantly modified spectrophotometric method [9]. In a 25 ml volumetric flask containing 9 ml of distilled water, a diluted sample (1 ml) or gallic acid standard phenolic compound was added. The mixture was agitated after 1 ml of Folin-phenol Ciocalteu's reagent was added. After 5 min, 10 ml of 7% Na₂Co₃ solution was added to the test sample solution, which was then diluted to 25 ml of distilled water and properly mixed. The mixture was kept in the dark for 90 min at 23°C before the absorbance at 750 nm was measured. Total phenol content was calculated by extrapolating a calibration curve created by producing a gallic acid solution (20–80 mg/ml). The phenolic compound estimation was performed in triplicate. The total phenolic content was calculated as milligrams of gallic acid equivalents (GAE) per gram dry sample.

RESULTS

Collection and identification

The collected lichen sample is identified as *R. montagnei* Bel. em.D.D.Awasthi belongs to the family Roccellaceae. It is confirmed by Dr Sanjeeva Nayaka, Principal Scientist, National Botanical Research Institute, Lucknow and the lichen sample deposited in the lichen Herbarium of Bharathiar University.

Characterization of bioactive compound

Analysis of the UV visible spectrum

Erythrin's UV visible spectrum examination revealed peaks at 210,270 and 310 nm (Fig. 1).

FTIR analysis of a sample

FTIR spectrum showed characteristic stretching vibrations for alcohol, phenol, aldehydes, saturated aliphatic alkenes, aliphatic amines, and aromatic groups present in erythrin. The peak, bonds, and related functional groups are shown (Fig. 2) (Table 1).

NMR spectrum

The examination of 1 H NMR and 13 C-NMR spectrum (400 MHz, DMSO-d6) data provided supporting evidence for the structure of the erythrin, and a comprehensive assignment is presented (Tables 2 and 3) (Figs. 3 and 4).

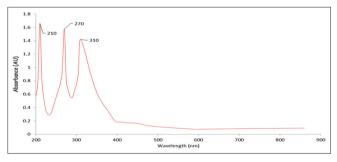


Fig. 1: Ultraviolet visible spectrum

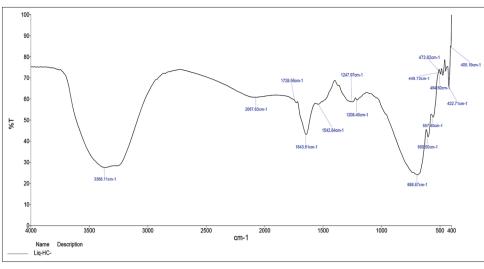


Fig. 2: Fourier transform infrared spectrum analysis of a sample

Table 1: Identification of functional group in the sample by FTIR spectrum

Table 3: ¹³ C-NMR ¹ H-NMR spectral data of erythrin

Peak	Bond	Functional groups
3366.11	0–H stretch, H–bonded	Alcohol and phenol
1728.56	C=O stretch	Aldehydes and
		saturated aliphatic
1643.61	-C=C- stretch	Alkenes
1247.97	C-N stretch	Aliphatic amines
1208.40	C-N stretch	Aliphatic amines
688.87	С–Н "оор"	Aromatic

FTIR: Fourier transform infrared

Table 2: 1H-NMR spectral data of erythrin

Location of Proton	Sample	Literature (Sundholm and Huneck, 1980, 1981)
2	10.50	10.48 (OH)
3	6.22	6.22 (H)
4	10.47	10.47 (OH)
5	6.64	6.62 (H)
8	2.33	2.35 (CH ₃)
2'	10.31	10.33 (OH)
3'	6.56	6.60 (H)
5'	6.60	6.61 (H)
7'	10.04	10.01 (COO)
8'	2.38	2.37 (CH ₃)
2"	10.02	10.01 (OH)
3"	10.00	10.00 (OH)
4"	9.90	9.95 (OH)

NMR: Nuclear magnetic resonance

The spectra indicate 20 carbon signals, two of which are methyls and two of which are carboxylic acid carbons. Because of methylation at the C-8 and 8'-positions, they absorb at 21.16 and 21.40 ppm, respectively. Compound chemical shifts were compared to published values [10,11].

Finding compound

Based on this, the $^{\rm 13}{\rm C}$ and $^{\rm 1}{\rm H}\text{-}{\rm NMR}$ data have been characterized as erythrin.

Structure: erythrin (molecular formula: C20H22O10).

The structure of the erythrin is confirmed by comparing it with the results of [12], in which erythrin containing fraction from column

Location of Carbon	Sample	Literature (Sundholm and Huneck, 1980, 1981)
1	108.39	108.2
2	160.61	160.2
3	100.40	100.5
4	161.23	161.1
5	109.94	109.9
Location of Carbon	Sample	Literature (Sundholm
of Carbon		and Huneck, 1980, 1981)
6	141.29	140.4
7	167.05	167.1
8	21.40	21.3
1'	116.60	116.4
2'	158.07	158.7
3'	107.47	107.4
4'	153.12	152.3
5'	114.76	114.8
6'	140.01	139.6
7'	170.90	170.7
8'	21.16	21.0
1"	101.23	
2"	63.97	
3"	60.22	
4"	50.81	

NMR: Nuclear magnetic resonance

chromatography was purified and subjected to spectroscopic analysis and the molecule was characterized as C20H22010, [3-hydroxy-5methyl-4-((2,3,4-trihydroxybutoxy) carbonyl) phenyl2,4-dihydroxy-6methyl benzoate] (Fig. 5).

High-performance liquid chromatography (HPLC) analysis The HPLC analysis of erythrin showed a peak at 12.475 (Fig. 6) (Table 4).

Gas chromatography-mass spectrometry (GC-MS) analysis of the sample GCMS analysis revealed a total of 20 bioactive lichen components in the thallus extract of *R. montagnei*. Supplementary Table 5 and Fig. 7 show the active principles together with their R. time, molecular formula, and molecular weight. The prevailing compounds in this acetone extract detected were 1,3-dioxolane-4,5 dimenthanol, propanoic acid, 2-hydroxy-2-methyl, 2,2-dimethyl-4-(2-propyl) aminobutanone etc., the biological activities of the active principles are presented (Table 6).

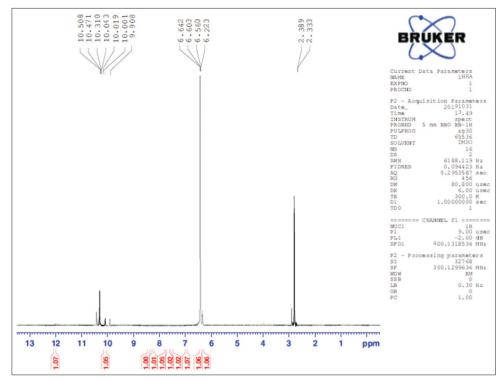


Fig. 3: ¹H-nuclear magnetic resonance spectral data of erythrin

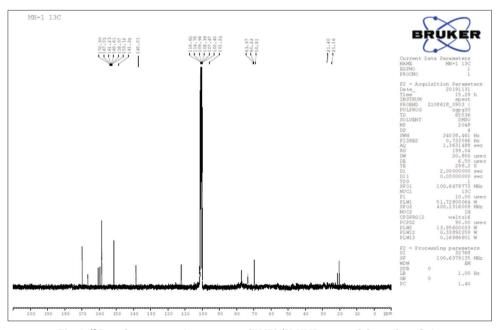


Fig. 4: ¹³C-nuclear magnetic resonance (NMR) ¹H-NMR spectral data of erythrin

Bioprospecting assays

Antimicrobial activity

The antibacterial and antifungal activities of *R. montagnei* acetone extract were investigated. According to the findings, lichen extract has average antimicrobial activity against the test organisms (Table 7). At 150 μ l of extract concentration, the inhibition zone of the extract against *E. coli* was found to be the highest (8.75±0.61 mm) and the lowest with *V. cholera* (7.90±0.55 mm). Furthermore, the inhibition zone against *S. aureus* was moderate (8.05±0.56 mm). The extract inhibited *C. albicans* growth with a maximum inhibition zone of 7.50±0.52 mm and a minimum inhibition zone of 7.20±0.50 mm against *A. niger. P. citrinum* is inhibited in a moderate zone with a diameter of 7.15±0.50 mm (Fig. 8).

Table 4: HPLC analysis. Detector AChl 254 nm-Peak table

Peak#	Ret. Time	Area	Height	Area%	Height%
1	12.475	5609417	114518	100.000	100.000
Total	12.475	5609417	114518	100.000	100.000

HPLC: High-performance liquid chromatography

In-vitro antioxidant activity

DPPH scavenging method

The DPPH scavenging method was used to evaluate the *in vitro* radical scavenging activity of *R. montagnei* acetone extract. The IC_{50} values of

Didecyl 1,4-dihydro-2,6-dimethyl

Table 5: Identification of bioactive compounds in the sampleby GC-MS analysis							
ak#	R. Time	Area %	Molecular formula	Molecular weight	Name of the compounds		
	5.405	4.56	$C_7 H_{14} O_4$	162	1,3-dioxolane-4,5 dimethaol, 2,2-d		
	5.526	4.46	$C_{5}H_{10}^{4}O_{3}^{4}$	118	Propanoic acid, 2-hydroxy-2-methyl-, methyl		
	6.404	0.85	C ₉ H ₁₉ NO	157	2,2-dimethyl-4-(2-propyl) aminobutanone		
	7.426	44.74	$C_7 H_8 O_2$	124	5-methyl-1,3-benzenediol		
	7.717	2.10	C ₄ H ₆ O	70	3-butyn-1-ol		
	7.783	1.59	CH ₃ BO	42	Borane, compd. With carbon monoxide (1:1)		
	7.842	0.53	$C_{22}H_{13}NO_4$	355	Ethyl 1-hexyl-4-hydroxy-2 (1h)-oxo-		
	8.560	0.49	$C_4 H_4 O_2$	84	But-3-ynoic acid		
	9.452	1.23	$C_{8}^{4}H_{16}^{4}O_{2}^{2}$	144	Octanoic acid		
1	10.017	1.18	$C_{20}H_{26}O_{4}$	330	,1,2-benzoldicarbonsaeure		
	10.827	0.49	$C_{15}H_{32}O^{4}$	228	1-pentadecanol		
	11.078	0.50	$C_7 H_6 O_2$	122	Homo-p-quinone (bicyclo (4.1.0) hep		
	13.758	0.85	$C_8 H_{14}$	110	Bicyclo[4.1.0]heptane, 2-methyl		
	13.994	3.53	$C_{18}H_{34}O_2$	282	9-Octadecenoic acid		
	14.183	0.45	$C_{17}^{10}H_{26}^{34}O_{2}^{2}$	262	1,1'-bibicyclo (2.2.2) octyl-4-carboxylic acid		
	15.570	0.68	$C_{11}^{1}H_{22}^{2}O^{2}$	170	Trans-2-Undecen-1-Ol		
	15.683	0.60	$C_{15}^{11}H_{14}^{22}N_2O_2$	254	4-(methoxymethyl)-6-methyl-2-ph		
	15.807	18.70	$C_{22}^{15}H_{42}^{14}O_2^{2}$	338	13-docosenoic acid		
1	16.479	12.02	$C_{22}^{22}H_{42}^{42}O_{2}^{2}$	338	13-docosenoic acid		
			2 ¹¹ 1 ¹ 1 ¹				

GC-MS: Gas chromatography-mass spectrometry

046

19.311

4 5 6

20

Table 6: Biological activity of phytocomponents identified in the sample by GC-MS

365

H₂₇NO

C

S. No.	Name of the Compounds	Biological activity**
1	1,3-Dioxolane-4,5 Dimetha OL, 2,2-D	Antimicrobial and anti-inflammatory activity
2	1,2-benzoldicarbonsaeure	Used as Softeners, used in the preparation of perfumes and cosmetics,
		Used as plasticized vinyl seats on furniture and in cars, and clothing
		including jackets, raincoats, and boots. Used in textiles, as dyestuffs,
		cosmetics, and glassmaking
3	1-pentadecanol	Antiasthmatics and Bronchodilators
4	9-Octadecenoic acid	Antihypertensive, Increase HDL, and decrease LDL Cholesterol
5	Octanoic acid	Antimicrobial activity and Flavor
6	Trans-2-Undecen-1-Ol	Antimicrobial
7	4-(Methoxymethyl)-6-Methyl-2-Ph	Antimicrobial, Antioxidant, Anti-inflammatory, and Analgesic
8	13-docosenoic acid	Antipyretic, anti-inflammatory agents, Antibacterial, and viral agents

GC-MS: Gas chromatography-mass spectrometry

Table 7: Anti-microbial activity of Roccella montagnei in acetone extract

Strains	Concentrat	Std. (30 µl)		
	50	100	150	
Escherichia coli (mm)	3.15±0.22	5.40±0.37	8.75±0.61	11.65±0.81
Staphylococcus aureus (mm)	2.70±0.18	5.05±0.35	8.10±0.56	11.30±0.79
Vibrio cholera (mm)	2.30±0.16	4.75±0.33	7.90±0.55	11.15±0.78
Candida albicans (mm)	2.25±0.15	4.55±0.31	7.20±0.50	10.95±0.76
Aspergillus nige r (mm)	1.95 ± 0.13	4.30±0.30	7.10±0.49	10.70±0.74
Penicillium citrinum (mm)	1.50±0.10	4.25±0.29	7.15±0.50	10.50±0.73

Values expressed as Mean±SD for triplicates, Standard: Chloramphenicol and Fluconazole, mm: Millime

lichen extract and ascorbic acid were determined to be $45.70 \,\mu\text{g/ml}$ and 39.74 µg/ml, respectively (Fig. 9) (Table 8). The extract inhibited DPPH activity by a significant percentage. The results showed that lichen extract has the same potential as standard L-ascorbic acid.

Fig. 5: The structure of the erythrin

Hydrogen peroxide scavenging activity

The hydrogen peroxide scavenging method was used to evaluate the in vitro radical scavenging activity of R. montagnei acetone extract. The $IC_{_{50}}$ values of lichen extract, ascorbic acid, and rutin were determined to be $39.39 \,\mu$ g/ml, $40.66 \,\mu$ g/ml, and $45.58 \,\mu$ g/ml, respectively (Fig. 10). The extract inhibited hydrogen peroxide activity by a significant percentage. According to the findings (Table 9), lichen extract has the same potential as standard L-ascorbic acid and rutin.

Phosphomolybdenum assay

The in vitro antioxidant activity, phosphomolybdenum assay was done. The results are shown (Fig. 11). The maximum antioxidant content of 44.66 mg/g ascorbic acid equivalents was observed in the 100 μ g/ml acetone extract of R. montagnei.

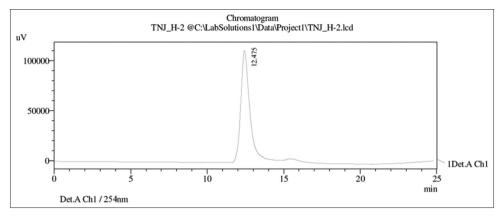


Fig. 6: High-performance liquid chromatography analysis

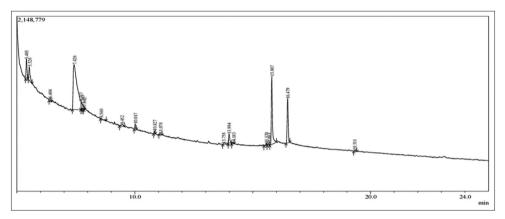


Fig. 7: Gas chromatogram and mass spectrum of sample

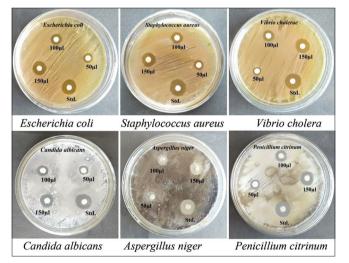


Fig. 8: Anti-microbial activity of the sample

Quantitative analysis of total phenol content of the sample

Total phenolic content was higher in acetone extracts of *R. montagnei* with 214.84 ± 14.84 mg (GAE/g lichen extracts). The results are shown (Table 10 and Fig. 12).

DISCUSSION

R. montagnei, which yields erythrin, a biologically active compound and characteristic analyzing of erythrin, through UV spectrum analysis, FTIR, NMR, HPLC, and a total number of bioactive lichen compounds were identified in thallus extract of *R. montagnei* by GCMS analysis.

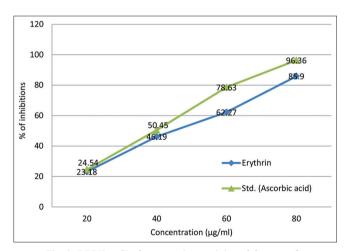


Fig. 9: DPPH radical scavenging activity of the sample

Acetone aids in the quicker extraction of lichen components from lichens, hence, it was employed for erythrin extraction in the present investigation. For column chromatography, the extract was eluted in a silica gel column. Erythrin was revealed to be a significant component in the natural thallus of *R. montagnei* [13]. The present study's UV spectrum analysis results are consistent with [14] research, which stated that the UV spectrum analysis of erythrin revealed peaks at 212, 272, and 304 nm. The FTIR spectrum results are comparable to [15] study of the FTIR spectrum of *R. montagnei*, which displays the distinctive band at 3409 cm⁻¹, which we attribute to the OH stretching frequency. The carbonyl stretching vibration is responsible for the strong band at 1252 cm⁻¹.

Table 8: DPPH radica	l scavenging activity of the sample
----------------------	-------------------------------------

Samples	% of inhibitions	IC ₅₀ value (µg/ml)			
	20 (µg/ml)	40 (µg/ml)	60 (µg/ml)	80 (µg/ml)	
Acetone extract	23.18±1.62	46.19±3.23	62.27±4.35	85.90±6.01	45.70
Std. (Ascorbic acid)	24.54±1.71	50.45±3.53	78.63±5.50	96.36±6.74	39.74

DPPH: 2,2-diphenyl-1-picryl-hydrazyl-hydrate, Values expressed as Mean±SD for triplicate

Table 9: H₂O₂ scavenging activity of the sample

Samples	% of inhibitions					IC ₅₀ value (µg/ml)
	20 (µg/ml)	40 (µg/ml)	60 (µg/ml)	80 (µg/ml)	100 (µg/ml)	
Extract	11.89±4.62	31.76±1.97	37.76±2.69	47.44±2.36	56.58±3.07	39.39429
Std (Ascorbic acid)	16	23.2	32.8	37.9	56.8	40.66667
Rutin	9.6	31.2	40.8	64	71.2	45.58974

Values expressed as Mean±SD for triplicate

Table 10: Total phenol content

Name of sample	Total phenol (Milligrams of gallic acid (GAE) equivalents per gram)		
Lichen Extract	214.84±14.84		
Values are expressed as Mean±SD for triplicates			

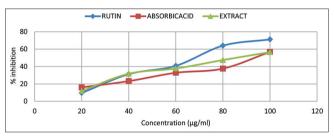


Fig. 10: Hydrogen peroxide scavenging activity of the sample

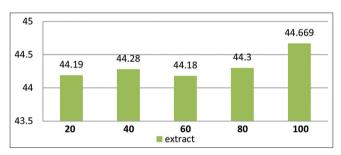


Fig. 11: Phosphomolybdenum assay

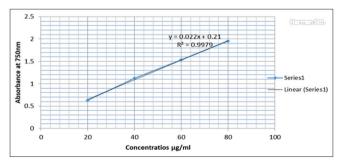


Fig. 12: Standard curve for total phenol using gallic acid

Lichen's secondary metabolites play a significant role in biological activities – antimicrobial, antioxidant, antitumor, anti-insecticidal, etc.

In the present study, in-vitro antimicrobial and antioxidant activities of acetone extract from R. montagnei. In this experiment, the tested acetone lichen extract shows a similar anti-microbial activity potential to the standard. The strength of the antimicrobial action varies according to the lichen species, concentration, and bacteria examined. This antimicrobial study results that the highest 8.75±0.61 mm zone of inhibition occurs in E. coli and the lowest 7.20±0.50 mm zone of inhibition occurs in A. niger. The acetone extract of R. montagnei shows strong antibacterial than antifungal activity, this result accords with antimicrobial activity studies [16,17] which explain that fungi are less sensitive than bacteria in antimicrobial studies because of their cell wall composition and permeability differences. The Grampositive bacteria's cell wall is made up of peptidoglycans, lipoprotein, and lipopolysaccharides [7,18] and the fungi cell wall consists of polysaccharides (Lichen and glucan) and the cell wall is poorly permeable. Our results are in agreement with the work done by [19,20] that the acetone extract of R. montagnei is stronger against bacterial pathogens especially Gram-positive bacteria than the fungi.

Acetone extract of R. montagnei was subjected to antioxidant activity using the DPPH scavenging method, hydrogen peroxide scavenging method, and phosphomolybdenum assays. In in vitro, the acetone extract of lichen has similar potential standards against different types of oxidative systems. The extract shows good radical scavenging activity because of the presence of phenolic content in lichen. Based on the study's results revealed that the antioxidative property of the extract is due to the presence of phenolic compounds in the lichen. Phenolic components stabilized the free radicals by donating hydrogen [21] and they are the potential antioxidant free radical terminators [22,23]. The correlation between phenolic content and antioxidative activities is found in numerous researches [16,24,25]. Even though some lichen extract shows no correlation between phenolic content and antioxidative activities and the antioxidant activity of various lichens may depend on other non-phenol components. One example of that is the aqueous extract of Cetraria ilandica has high antioxidant activity. According to [26] the acetone, extract of R. montagnei showed higher radical scavenging activity in all the antioxidant assays. Hence, in future, after proper clinical investigation, R. montagnei will be used as an effective antioxidant source.

CONCLUSION

This study concluded that erythrin, a biologically active compound is isolated from the *R. montagnei* is characteristic analyzing, was done through UV spectrum analysis, FTIR, NMR, HPLC, and a total number of bioactive lichen compounds were identified in thallus extract of *R. montagnei* by GCMS analysis. In further studies, erythrin is tested for medicinal properties. The tested lichen extract has an effective *in vitro* antimicrobial and antioxidant activity. Based on the results, this lichen has excellent and secure natural antimicrobial and antioxidant agents.

In the future, this lichen will have a significant role in human, animal, and plant diseases.

AUTHORS' CONTRIBUTION

The concept plan and experiment support were done by Corresponding Author Dr. P. Ponmuruganand Mr. P. Arumugam. The lichen collection, antimicrobial activities, and antioxidant activities were done by the first author Ms. S. Jeya Preethi and the manuscript editing and modification were done by Dr. R. Kalidoss and Ms. M. Shenbagam.

CONFLICT OF INTEREST

None.

AUTHORS' FUNDING

This work was supported by the Rashtriya Uchchatar Shiksha Abhiyan (RUSA 2.0) - Bharathiar Cancer Theranostics Research Centre, Coimbatore, Tamil Nadu, India.

REFERENCES

- Yang Y, Anderson EJ. Antimicrobial activity of porcine myeloperoxidase against plant pathogenic bacteria and fungi. J Appl Microbiol 1999;86:211-20. doi: 10.1046/j.1365-2672.1999.00652.x
- Müller K. Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 2001;56:9-16. doi: 10.1007/s002530100684, PMID 11499952
- Hawksworth DL, Hale ME. The Biology of Lichens. 3rd ed., Vol. 30. London: Edward Arnold Ltd.; 1975. p. 424.
- Awasthi DD. A compendium of the Macrolichens from India, Nepal and Sri Lank. 1st ed. Dehradun, Uttarakhand: Bishen Singh Mahendra Pal Singh; 2007. p. 580.
- Awoyinka OA, Balogun IO, Ogunnowo AA. Phytochemical screening and *in vitro* bioactivity of *Cnidoscolus aconitifolius (Euphorbiaceae)*. J Med Plants Res 2007;1:63-5.
- Balaji P, Bharath P, Satyan RS, Hariharan GN. In vitro antimicrobial activity of Roccella montagnei thallus extracts. J Trop Med Plants 2006;7:169.
- Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 1992;40:945-8. doi: 10.1021/jf00018a005
- Ruiz-Herrera J. Fungal Cell Wall: Structure, Synthesis, and Assembly. 2nded., Vol. 29. United States: CRC Press; 1991.
- Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of Vitamin E. Anal Biochem 1999;269:337-41. doi: 10.1006/abio.1999.4019, PMID 10222007
- Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 2003;81:321-6. doi: 10.1016/S0308-8146(02)00423-5
- 11. Sundholm EG, Huneck S. 13C NMR spectra of lichen depsides, depsidones and depsones. 1. Compounds of the orcinol series. Chem

Scr 1980;16:197-200.

- Sundholm EG, Huneck S. 13C NMR spectra of lichen depsides, depsidones and depsones. 2. Compounds of the B-orcinol series. Chem Scr 1981;18:233-6.
- Hariharan GN, Karthik S. Muthukumar S. Mycobiont and whole thallus cultures of *Roccella Montagnei Bél*. For the biosynthesis of secondary compounds. Cryptogam Biodivers Assess 2016;1:15-20.
- Subba Rao V, Seshadri TR. Chemical investigation of Indian lichens. Part I. Chemical components of *Roccella montagnei*. Proc Indian Acad Sci 1940;5:466.
- Huneck S, Yoshimura I. Identification of Lichen Substances. Berlin Heidelberg: Springer; 1996. p. 11-123.
- 16. Khader SZ, ZameerAhmeda TS, Nayaka S, Arunachalam T, Balasubramanian SK, Ponnusamy P. Radical scavenging potential, antiinflammatory and antiarthritic activity of isolated isomer methylγ-Orsellinate and roccellatol from *Roccella montagnei* Bel. Bull Fac Pharm 2018;56:39-45.
- Ranković B, Ranković D, Kosanić M, Marić D. Antioxidant and antimicrobial properties of the lichens *Anaptychya ciliaris*, *Nephroma parile, Ochrolechia tartarea* and *Parmelia Centrifuga*. Cent Eur J Biol 2010;5:649-55. doi: 10.2478/s11535-010-0043-z
- Heijenoort van J. Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 2001;11:25-36. doi: 10.1093/ glycob/11.3.25r, PMID 11320055
- Sastry AV, Vedula GS, Tatipamula VB. *In-vitro* biological profile of mangrove associated lichen, *Roccella montagnei* extracts. Inven Impact Ethnopharmacol 2018;3:153-8.
- Pandey A, Dikshit A, Nayaka S. Antimicrobial activity of *Roccella montagnei* against pathogenic microorganisms. Int J Adv Res Ideas Innov Technol 2019;5:1426-31.
- Sawa T, Nakao M, Akaike T, Ono K, Maeda H. Alkylperoxyl radical scavenging activity of various flavonoids and anti-tumor-promoter effect of vegetables. J Agric Food Chem 1999;47:397-402. doi: 10.1021/jf980765e, PMID 10563906
- Kaushik R, Narayanan P, Vasudevan V, Muthukumaran G, Usha A. Nutrient composition of cultivated stevia leaves and the influence of polyphenols and plant pigments on sensory and antioxidant properties of leaf extracts. J Food Sci Technol 2010;47:27-33. doi: 10.1007/ s13197-010-0011-7, PMID 23572597
- Shahidi F, Wanasundara PK. Phenolic antioxidants. Crit Rev Food Sci Nutr 1992;32:67-103. doi: 10.1080/10408399209527581, PMID 1290586
- Mukherjee S, Pawar N, Kulkarni O, Nagarkar B, Thopte S, Bhujbal A, et al. Evaluation of free-radical quenching properties of standard Ayurvedic formulation Vayasthapana Rasayana. BMC Complement Altern Med 2011;11:38. doi: 10.1186/1472-6882-11-38, PMID 21569386
- Odabasoglu F, Aslan A, Cakir A, Suleyman H, Karagoz Y, Halici M, et al. Comparison of antioxidant activity and phenolic content of three lichen species. Phytother Res 2004;18:938-41. doi: 10.1002/ptr.1488, PMID 15597312
- Tatipamula VB, Vedula GS, Sastry AV. Chemical and pharmacological evaluation of *Manglicolous lichen Roccella montagnei* Bel em. DD Awasthi. Futur J Pharm Sci 2019;5:1-9.