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ABSTRACT

It is known that humans have been using natural products for medicinal use for ages. Tubeimoside-1 (TBMS1) is a triterpenoid saponin first isolated 
in China from Bolbostemma paniculatum (Maxim) Franquet, Cucurbitaceae. This review provides a deep overview on TBMS1 and extensively 
summarizes its pharmacological functions. As result, TBMS1 has drawn great interest in medicinal field due to its multiple pharmacological functions 
such as anticancer, anti-inflammatory, antitumor, antidiabetic, anti-human immunodeficiency viruses, and neuroprotective properties. Further, 
TBMS1 plays an important role in a wide range of pharmacological processes. Although possessing important functions, further experimentations are 
required to broaden the scope of its application.
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INTRODUCTION

Plants have been used as a source of medicine throughout history and 
continue to serve as a basis for many pharmaceuticals used today [1]. 
Natural products having been known as one of the most important 
sources of potential drug leads [2-4] and continue to provide structural 
diversity. They have a long tradition as valuable starting points for 
medicinal chemistry and drug discovery [5]. Their use as medicines has 
been described throughout history in the form of traditional medicines, 
remedies, potions, and oils. The main source of knowledge about the 
use of natural plant products is the result of human experimentation 
through trial and error over hundreds of centuries [6]. Many researches 
worldwide are focusing on natural products for the discovery of new 
compounds.

Rhizoma bolbostemmatis (Chinese name “Tu Bei Mu”), the tuber of 
Bolbostemma paniculatum, is a traditional Chinese medicine. It has 
been used to treat acute mastitis, inflammation, and snake venoms in 
Qing Dynasty. In Sichuan and Shanxi (China), Bolbostemae rhizome is 
considered as a traditional Chinese herb effective in the treatment of 
esophagus and stomach cancer [7]. Tubeimoside-1 (TBMS1) (Fig. 1), 
a triterpenoid saponin, was purified from this plant in 1986 for the 
1st time [8]. As Chinese medicine monomer with a high yield and water 
solubility, TBMS-1 is used to treat mammary carbuncles, scrofula, and 
phlegm nodes [7]. Our objective is to update the knowledge about 
TBMS1 and its pharmacological effects that will be useful to scientists 
working in the field of natural compounds.

NATURAL SOURCES OF TBMS-1

TBMS-1 (Fig. 2) is extracted from the tuber of B. paniculatum (Maxim) 
Franquet (Cucurbitaceae) [8]. R. bolbostemmatis, also known as “Tu Bei 
Mu” in Chinese, is the dry tuber of B. paniculatum (Maxim.) [9].

BIOLOGICAL/PHARMACOLOGICAL FUNCTIONS OF TBMS1 AND ITS 
MECHANISMS OF ACTION

Growing studies have reported that TBMS1 is known to show 
considerable pharmacological properties such as anti-cancer, anti-human 
immunodeficiency viruses (HIV) [10], anti-inflammatory  [8,11,12], 
anti-tumor, and anti-tumorigenic activities  [11].

Anti-inflammatory activity (Table 1)
Inflammation, a defense mechanism, is an immediate response of a 
body to tissue damage caused by pathogens, toxic stimuli (physical 
or chemical injury), or any other cause. Although inflammatory 
response is a defense mechanism, if persistent, it can put person at 
increased risks of developing multiple pathological conditions such as 
cancer, allergy, atherosclerosis, rheumatoid arthritis, and autoimmune 
diseases [13]. The negative side effects associated with nonsteroidal 
anti-inflammatory drugs are triggering the need for researchers to find 
effective and safe alternatives [14]. The authors, therefore, carried out 
a study to provide more evidence of the protective effects of TBMS1 
on pathological conditions such as rheumatoid arthritis. They first 
found that the concentrations of Astilbin and TBMS1 in the n-butyl 
alcohol fraction of this couple drug are, respectively, 13.13% and 3.4%. 
The results of their analysis showed that the drug couple exhibited 
considerable inhibitory activity on the paw edema model with lowered 
levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha 
(TNF-α). The authors concluded that the natural product possesses a 
potential to be established as a new therapeutic agent [15]. In collagen-
induced arthritis rats, TBMS1 treatment attenuated the inflammation 
and the destruction of the rats’ joints. On the other hand, in vitro studies 
also revealed that TBMS1 has capability to suppress the production 
of pro-inflammatory cytokines including IL-1β, IL-6, IL-8, and TNFα, 
downregulate the expression of matrix metallopeptidase 9. Mechanistic 
analysis demonstrated that TBMS1 inhibited TNFα-induced activations 
of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase 
(p38 and c-Jun N-terminal kinase [JNK]). This inhibition resulted in 
down-regulation of pro-inflammatory cytokines, which has a beneficial 
effect for anti-proliferative and anti-migratory activities of fibroblast-
like synovial cells [16]. TBMS1 at concentrations of 5–100 μmol/L has 
been known to suppress the viability of DU145 and P3 cells, induced 
apoptosis and cell cycle arrest at Gap0/Gap1 (G0/G1) phase. In 
DU145 cells, TBMS1-induced mitochondrial apoptosis, modulated B-cell 
lymphoma 2 (Bcl-2) family protein and cleaved caspase-3, and activated 
apoptosis signal-regulating kinase (ASK-1) and its downstream targets 
p38 and JNK [17].

In lung injury, the effects of TBMS1 and its mechanisms of action 
were investigated. As results, treatment with TBMS1 attenuated the 
development of pulmonary injury. Its mechanisms of action were 
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associated with reducing cytotoxic effects, levels of inflammatory 
mediators, and oxidative damage, indicating that TBMS1 is a potential 
therapeutic drug for treating lung injury [18]. In 2013, our laboratory 
investigated the protective effect of TBMS1 on inflammation in 
lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and a LPS-
induced in vivo lung injury model. Our results showed that TBMS1 
inhibited the production of the pro-inflammatory cytokines, TNF-α, 
IL-6, and IL-1β in vitro and in vivo. Pre-treatment with TBMS1 
attenuated the development of pulmonary edema, histological 
severities, and inflammatory cells infiltration in mice with lung 
injury. In addition, we further demonstrated that TBMS1 exerts an 
anti-inflammatory effect in vivo model of acute lung injury through 
suppression of nuclear factor of kappa light polypeptide gene 
enhancer in B-cells activation and p38/extracellular signal-regulated 
kinase mitogen-activated protein kinases signaling [19]. In other 
research, TBMS1 also inhibited the proliferation of L-02 cells. This 
growth inhibition of L-02 cells was accompanied by the collapse 
of mitochondrial membrane potential, release of cyt-c from the 
mitochondria to the cytosol, and activation of caspase-9 and -3. 
This observation indicates an apoptosis through the mitochondrial 
pathway and may be significant to clinical applications [20].

Sepsis is a disease with high mortality rate worldwide. During the 
disease, inducible nitric oxide synthase (iNOS)-induced vascular 
hyporeactivity plays a key role. In recent study, Luo et al., 2020, 
investigated other effects of TBMS1 and found that TBMS1 (4 mg/kg) 
intraperitoneally injected 1 h before cecal ligation and puncture partially 
improved survival, ameliorated mean arterial pressure, and enhanced 
vascular responsiveness to norepinephrine and chlorure de potassium 
in wild-type septic mice. Furthermore, the activated toll-like receptor 4 
(TLR4)-myeloid differentiation primary response 88 (MyD88)-NF-κB-
iNOS pathway was attenuated by TBMS1 both in vitro and in vivo. The 
authors concluded that TBMS1 may protect mice in sepsis by reducing 
excessive nitric oxide production through inhibiting the TLR4-MyD88-
NF-κB-iNOS pathway [21].

Parkinson’s disease (PD) is a common neurodegenerative disease in 
middle-aged and elderly people, and characterized clinically by resting 
tremor, bradykinesia, rigidity, and postural instability. It has been shown 
that microglia-mediated inflammation may play an important role in 
the neurodegenerative process [22-35]. Therefore, authors investigated 
whether TBMS1 could protect dopaminergic neurons by inhibiting the 
activation of microglia in LPS-induced PD rat model. During their study, 
the effect and mechanism of TBMS1 on neuroinflammation were assessed 
in LPS-exposed murine microglial BV-2 cells. The results in vivo showed 
that TBMS1 suppressed microglial activation and dopaminergic neuron 
reduction. In vitro study found that TBMS1 could inhibit LPS-induced 
inflammatory responses in BV-2 cells, and this effect was mediated by 
suppressing the phosphorylation of protein kinase B (AKT), (NF-κB p65), 
p38, and extracellular regulated protein kinases (ERK1/2) [36].

Antidiabetic activity
Diabetes mellitus is a complex and serious multifactorial disease 
characterized by hyperglycemia and glucose intolerance, due either 
to a relative deficiency in insulin secretion or to an alteration in the 
effectiveness of insulin action to promote glucose uptake [37-40]. 
Different types of medicinal plants are used to treat diabetes mellitus. 
For the treatment of diabetes, before insulin became available, the only 
options were those based on traditional approaches [41-55]. Among 
them, Yang et al. (2020) found that TBMS1 ameliorated the decrease of 
bone mass in type 2 diabetes-induced osteoporosis in rats. It appears 
that TBMS1 provides this protective activity through the inhibition 
of osteoclast formation and function. In addition, TBMS1 has been 
shown to inhibit transcriptional activation of NF-κB and degradation 
of IκBα. Collectively, the results demonstrate that TBMS1 attenuates 
osteoclastogenesis through downregulation of the NF-κB signaling 
pathway. In conclusion, this natural product may be a potential 
candidate for the treatment of bone-destroying diseases such as 
osteoporosis in type 2 diabetes [56].

Fig. 1: Chemical structure of tubeimoside

Fig. 2: Natural source of tubeimoside 1

Table 1 : Anti-inflammatory activities in vitro and in vivo

Assay Organisms tested Concentrations Molecular targets References
Carrageenan -induced paw edema Rats 0.05–1.6 mg/mL IL-1β, IL-6, and TNF-α [15]
LPS-injected Parkinson’s disease Rats 1, 2, and  

4 mg/kg/day
TH protein level, OX-42, [36]

LPS-exposed murine microglial BV-2 cells 1, 2, and 4 μM IL-6, IL-1β, TNF-α, iNOS, COX-2 AKT, NF-κB p65,  
p38, and ERK1/2
No effect on the phosphorylation of JNK1/2

[36]

Collagen -induced arthritis Rats NF-κB, MAPKs (p38 and JNK) [16]
Effects on synoviocytes FLS cells IL-1β, IL-6, IL-8 TNFα, MMP-9, NF-κB, and MAPKs 

(p38 and JNK)
[16]

LPS-stimulated RAW 264.7 cells RAW 264.7 cells 2–6 mM TNF-α, IL-6, IL-1β
IκB, and p38

[19]

LPS-induced in vivo lung injury BALB/c Mice 1, 2 or 4 mg/kg TNF-α, IL-6, IL-1β, IκB, and p38 [19]
Particulate matter -induced 
pulmonary

BALB/c mice 45–180 mg/kg TNF-α and IL-6
MDA, NO, iNOS, and SOD

[18]

Role in protecting dopaminergic 
neurons

Rats 1,2,4 mg/kg/day AKT, NF-κB p65, and p38 ERK1/2 [36]

SOD: Superoxide dismutase, COX-2: Cyclooxygenase-2, MAPKs: Mitogen-activated protein kinases, PD: Parkinson’s disease
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Anticancer activity (Table 2)
Cancer is a disease of multicellular organisms that is characterized 
by the uncontrolled multiplication of subtly altered normal human 
cells  [57-60]. As many as, 89% of patients with cancer or other chronic 
conditions use alternative therapies, often herbal or natural products, 
and 75% are secretive about alternative product use [61-69].

Given the remarkable chemical diversity in nature, natural products are 
considered as a rich reservoir of bioactive compounds with therapeutic 
potentials [70,71].

The number produced by plants has been estimated to be 
between 500,000 and 600,000. With regard to biological activity, 
there are about 200,000–250,000 biologically active products 
(active and/or toxic)  [72-75].

Anticancer activity is the effect of natural and synthetic or biological 
and chemical agents in reversing, eliminating, or preventing cancerous 
progression. The development of cancer registries worldwide has led to 
the search for new drug candidates that are toxic to cancer cells while 
having no harmful effect on normal cells. Thus, the investigation of 
natural products is an area of high interest [61-63].

TBMS1 is known as a novel compound with anticancer activity by 
inhibiting the growth of several cancer cells including lung cancer  [76]. 
Its effect of TBMS1 on the metastasis of nonsmall cell lung cancer 
and underlying mechanisms has been investigated. The above results 
indicate that TBMS1 inhibits proliferation and metastasis, and 
contributes to apoptosis of NCI H1299 cells, which may be induced 
by overexpression of miRNA 126 5p, which inactivates the VEGF A/
vascular endothelial growth factor receptor-2 (VEGFR2)/ERK signaling 
pathway. Thus, TBMS1 may be considered as a very promising drug for 
the prevention and treatment of non-small cell lung cancer [77]. Islam 
et al. (2019) explained that TBMS1 has long been widely used in the 
treatment of various ailments (including cancer) in traditional Chinese 
medicine. In support of this statement, evidence of TBMS1 anticancer 
activities has been provided at different stages of carcinogenesis in 
in   vitro and in vivo models. For example, it could inhibit cell growth and 
proliferation and induce cell differentiation, apoptosis, and autophagy. 
It inhibits inflammatory responses and suppresses angiogenesis, 
invasion, and metastasis through various signaling pathways [9].

Strikingly, TBMS1 as a novel lethal impaired autophagolysosome 
inducer might enhance the therapeutic effects of chemotherapeutic 
drugs toward cervical cancer, such as cisplatin and paclitaxel [78]. 

Table 2: Anticancer activities of TBMS-1 in vitro and in vivo

Assay Organisms tested Concentrations Molecular targets References
Effect against cervical cancer cells HeLa and SiHa cells 5–30 uM AMPK [58]

Mice 3 mg/kg AMPK [58]
Inducing in vitro and in vivo 
macropinocytosis

SW480, DLD-1 and 
HCT116

8 uM Caspase 3 and PARP [59]

Effect on autophagy HeLa cells Akt-mTOR-eEF-2K [80]
Effect on proliferation and metastasis NCI-H1299 cells 10 µM VEGF)-A/VEGFR2/ERK [57]
Effect on the proliferation, metastasis, 
and apoptosis in vitro

CAL27 and SCC15 cells 10 μM PARP, p-ERK1/2, Bcl-2, caspase-3, 7 and 8 
and 9, PARP, c-Myc, and MMP-7

[89]

CXCR4-mediated metastasis of breast 
cancer

MDA-MB-231, MDA-
MB-435, T47D, and MCF-7 
cells

5 μM NF-κB [63]

Role on human colorectal cancer HCT-8 cells 10, 20, and 
50 µg/ml

Wnt/β-catenin [65]

Anticancer activity and molecular 
targets in human prostate cancer cells 
in vitro

DU145 and P3 human 
prostate cancer cells

5-100 μmol/L Bcl-2, caspase-3, ASK-1, p38, and JNK [17]

Effect against lung cancer NCl-H460 and A549 cells 
Nu/nu mice

5–50 μM
5 mg/kg

VEGFR2, Tie2, and AKT/mT [66]

NCI-H460 lung cancer cells 20 μM p53/MDM2, mTOR, and NF-κB [67]
Mechanism of its cytotoxic effect on 
EC109 cells

EC109 cells 45 µmol/L P21-cyclin, B1/cdc2 G2/M cell cycle arrest [68]

Effect on human gastric cancer cells BGC823 cells 0–10 μmol/L Bcl-2 [90]
Cytotoxic effect and apoptosis 
mechanism

HepG2 cells Caspase-3, -8, and -9, Fas, Fas ligand, Bcl-2, 
Bak, Bax, TNF-α, NF-κB, JNK, and p53

[81]

Pro-apoptotic activity against SKOV-3 
cell lines

SKOV-3 cell lines 2, 4, 8, and 
16 µM

ERK 1 and 2, Bcl-2/Bax caspase-3, and Ca²⁺ [91]

Effect in cisplatin-resistant human 
ovarian cancer cells

A2780/DDP cells 8 µmol/L Ca2+ , Bcl-2, GST-π mRNA, ERK, and p381 [92]

Effect in human choriocarcinoma 
JEG-3 cells 

JEG-3 cells 6 µM Bax, Bcl-2, rNF-κB, p38/MAPK, ERK1/2, 
PI3K/Akt

[93]

Effect in apoptosis-mediated cell 
death 

HepG2 cells 10, 20, and 
30 µM

Caspase-3 and -9 Bax and Bcl-2 [94]

Effect on the apoptosis of human 
nasopharyngeal carcinoma cell line 
CNE-2Z

CNE-2Z cells 10, 30, 40, 50, 
and 60 µM

bcl-2 and bax [95]

Effect on cell proliferation, cell cycle, 
and apoptosis

A375 cells 20 and 40 μM Bcl-2, Bax [96]

Antiproliferative effects in human 
bladder cancer T24 cells

T24 cells 10 and 20 µM Bcl-2, Bax, and p21 [97]

Pathways involved in induced 
cytotoxicity

HeLa cells ROS and Ca(2+) r, CyclinB1, Cdc2, and 
Cdc25C

[98]

Effect on lung cancer cell growth A549 and PC9 cells 4–32µM MAPK-JNK, AP-1, NF-κB and TNFα [76]
ROS: Reactive oxygen species, AMPK: 5’ adenosine monophosphate-activated protein kinase
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Extensive research revealed that TBMS1 could induce inhibition of 
proliferation and cell death of cervical cancer cells both in vitro and 
in  vivo. Further results showed that treatment with TBMS1 could induce 
the accumulation of autophagosomes, which is an important factor for 
TBMS1 against cervical cancer cells. It increased autophagosome by 
two pathways: It first initiates autophagy by stimulating 5’ adenosine 
monophosphate-activated protein kinase (AMPK) which would lead 
to stabilization of the Beclin1-Vps complex through dissociation of 
Bcl-2 from Beclin1; on the other hand, it could interfere with lysosomal 
cathepsin activity and block autophagic flux, leading to the collection 
of impaired autophagolysosomes. In colorectal cancer (CRC), it induces 
macropinocytosis in vitro and in vivo [79]. Activation of autophagy by 
the natural substance has been shown by the increase in LC3-II and 
GFP-LC3 spots, the observation of autophagosomes, and the increase 
in autophagic flux. In three human breast cancer cell lines, the authors 
demonstrated that the Akt-mammalian target of rapamycin (mTOR)-
eukaryotic elongation factor 2 kinase pathway has been involved in 
the activation of TBMS1-induced autophagy. In these studies, it has 
been observed that autophagy inhibition enhanced the cytotoxic effect 
of the product by promoting apoptosis, suggesting that inhibition of 
cytoprotective autophagy may be a therapeutic strategy to enhance the 
protective activity of TBMS1 against cancers [80]. Mechanism studies 
established that TBMS1 induces phosphorylation of apoptosis signal 
regulatory kinase 1 and its proteins (JNK and P38). The reported data 
confirmed that TBMS1 can induce oxidative stress-mediated apoptosis 
and G2/M phase arrest in HepG2 liver cancer cells through NF-KB, JNK, 
and p53 pathways [81,82].

A research evaluating the effect of TBMS1 on breast cancer metastasis 
was done in a metastasis model of nude mice and TBMS1 was shown to 
suppress the CXCR4-mediated metastasis of breast cancer by inhibiting 
NF-κB-binding activity [83]. Acting as the main active ingredients in 
the extract of R. bolbostemmatis, TBMS1, and acetylbenzoylaconine 
(at 10:10 μg/mL and 5:2.5 μg/mL) also produced inhibitory effects 
on the proliferation and migration of malondialdehyde-MB-231 and 
SKBR3 cells [84]. In addition, the role of TBMS1 on human CRC and its 
underlying mechanism was explored. In the study, TBMS1 inhibits the 
proliferation, migration/invasion of CRC cells, and reduces β-catenin 
expression. The authors demonstrated that TBMS1 inhibited CRC cell 
proliferation and invasion through suppressing the Wnt/β-catenin 
signaling pathway [85]. Studying the anticancer activity and molecular 
targets of TBMS1 in human prostate cancer cells in vitro, authors 
remarked that TBMS1 (5–100 μmol/L) significantly suppressed 
the viability of DU145 and P3 cells with half maximal inhibitory 

concentration values of approximately 10 and 20 μmol/L, induced 
apoptosis, and cell cycle arrest at G0/G1 phase in DU145 and P3 cells. 
In DU145 cells, it induced mitochondrial apoptosis, evidenced by 
reactive oxygen species (ROS) generation, mitochondrial dysfunction, 
endoplasmic reticulum stress, modulated Bcl-2 family protein and 
cleaved caspase-3, and activated ASK-1 and its downstream targets 
p38 and JNK. In lung cancer, results showed that TBMS1 stimulates 
proteasomal degradation of VEGFR2 and Tie2 in endothelial cells, 
which is found to downregulate AKT/mTOR signaling [86]. Its precise 
mechanism involved nucleolar stress-induced p53/murine double 
minute clone 2 (MDM2), mTOR, and NF-κB signaling pathways [87]. 
Biochemical studies of the drug showed that TBMS1-induced molecular 
events were related to mitochondria-induced intrinsic apoptosis and 
P21-cyclin B1/cdc2 complex-related G2/M cell cycle arrest [88].

Neuroprotective activity
It has been confirmed that dopaminergic neurons are damaged during 
PD. The authors first investigated whether TBMS1 could protect 
dopaminergic neurons and then evaluated its mechanism of action. 
In vivo results showed that TBMS1 was able to suppress microglial 
activation and reduction of dopaminergic neurons in the LPS-injected 
PD rat model. Overall, these results demonstrated that TBMS1 played 
a role in protecting dopaminergic neurons by inhibiting microglia-
mediated neuroinflammation [36].

Anti-HIV effect
As the risk of HIV infection continues to increase, effective therapeutic 
approaches are essential to ensure the recovery of infected 
patients  [99,100]. To determine whether TBMS1 has anti-infective 
activity against human HIV, the authors evaluated its effects on the 
HIV core protein p24 and on HIV-mediated cytopathogenesis. As 
results, TBMS1 inhibited both p24 production and cytopathogenesis 
mediated by human T-cell lymphotropic virus-IIIB. Therefore, the 
authors concluded that TBMS1 had an inhibitory action on the infection 
of HIV-1 isolates and would be a promising candidate for treatment of 
acquired immune deficiency syndrome [101,102].

Antitumor functions
Authors have tested and demonstrated with low toxicity the antitumor 
activity of TMBS1 in different tumors such as promyelocytic leukemia, 
lung cancer, cervical cancer, nasopharyngeal carcinoma, and esophageal 
carcinoma [103]. They observed that TMBS1 may induce a mitochondria-
related apoptotic pathway and cell cycle arrest in cervical carcinoma, 
ovarian cancer, choriocarcinoma, and glioma [91,93,104], inhibits 
the growth and invasion of CRC cells, and is effective in combination 

Fig. 3: Major molecular targets and mechanism of action of tubeimoside-1
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therapies, particularly at targeting drug-resistant cancerous cells [9]. 
TBMS1 treatment could either promote autophagy initiation by ROS-
induced AMPK activation, or block autophagy flux through inhibiting 
lysosomal hydrolytic enzymes [11,105].

PHARMACOKINETICS AND BIOAVAILABILITY STUDY

In a recent study, the authors aimed to establish and validate a rapid, 
selective, and sensitive ultra-performance liquid chromatography-
tandem mass spectrometry method to determine the outcome 
of TBMS1 in mouse whole blood and its application in studying 
pharmacokinetics and bioavailability. The lower limit of quantitation 
for TBMS1 was 2 ng/mL, and the calibration curve ranged linearly 
from 2 to 2000 ng/mL. The relative standard deviation of interday 
and intraday precision was <15%, and accuracy ranged from 91.7% to 
108.0%. The mean recovery was >66.9%, and the matrix effects were 
104.8% to 111.0%  [106].

CONCLUSION AND FUTURE PERSPECTIVES

TBMS1, the tuber of B. paniculatum (Maxim) Franquet (Cucurbitaceae), 
is a traditional Chinese herb. The extract has been reported to possess 
various pharmacological functions such as anticancer, anti-HIV, anti-
inflammatory, antitumor, antidiabetic, and neuroprotective activities. 
Our review supports the hypothesis that many pathways, mediators, 
and receptors are involved in TMBS1-induced effects (Figs. 3 and  4). 
Although TMBS1 is well known for its various pharmacological 
applications, several in vitro and in vivo researches are needed to 
further the medical knowledge on TMBS1 as agent for the prevention 
and treatment of various diseases.
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