IN-VITRO ANTIOXIDANT ACTIVITY AND FREE RADICAL SCAVENGING POTENTIAL OF ROOTS OF RED SAGE

SAILESH NARAYAN*, ABHILASHA MITTAL
Department of Pharmaceutical Sciences, Jyoti Vidhyapeeth Women’s University, Faculty of Pharmaceutical Sciences, Jaipur, Rajasthan, India. Email: saileshcology@yahoo.co.in

ABSTRACT

Objective: The objective of the present work is to study the in-vitro anti-oxidant activities of petroleum ether, ethyl acetate and methanolic extracts of Salvia splendens roots.

Methods: The extracts were studied using 1,1-diphenyl-2-picryl hydrazyl, hydrogen peroxide (H₂O₂), total phenolic content (TPC) and total flavonoid content (TFC). The TPC and TFC were estimated taking gallic acid and rutin calibration curve respectively.

Results: All the extracts possess in-vitro anti-oxidant activities. However, the order of possessing activities were methanolic > ethyl acetate > petroleum ether extracts of S. splendens roots. The TPC and TFC was highest in methanolic extract.

Conclusion: It can be concluded that S. splendens roots extracts possess anti-oxidant activities. The methanolic extract of S. splendens roots possess highest anti-oxidant activity in-vitro.

Keywords: Salvia splendens, In-vitro anti-oxidant, 1,1-diphenyl-2-picryl hydrazyl, Ferric reducing power activity, Hydrogen peroxide scavanging, Total phenolic content, Total flavonoid content

INTRODUCTION

Oxidative damage to cellular biomolecules such as lipids, proteins and DNA is thought to play a crucial role in the incidence of several chronic diseases [1-5]. Flavonoids are a group of polyphenolic compounds found abundantly in the plant kingdom. Interest in the possible health benefits of flavonoids and other polyphenolic compounds has increased in recent years owing to their potent antioxidant and free-radical scavenging activities [6-12].

The effects of free radicals on human beings are closely related to toxicity, disease and aging [1] Most living species have an efficient defense system to protect themselves against the oxidative stress induced by reactive oxygen species [2]. Recent investigations have shown that the antioxidant properties of plants could be correlated with oxidative stress defense and different human diseases including cancer, atherosclerosis and the aging process [3-5]. The antioxidants can interfere with the oxidation process by reacting with free radicals, chelating free catalytic metals and also by acting as oxygen scavengers. Salvia splendens of family Lamiaceae/Labiatae (Mint family) is commonly known as Scarlet sage [13-15]. It also reported the activity like analgesic and anti-inflammatory of roots, anti- ulcerative activity, antimicrobial activity, laxative activity, anti-oxidant, hepatoprotective and anti-hyperlipidemic activity have also been reported [13-19].

Hence, the present investigation was conducted to study in-vitro antioxidant activities of various roots extracts so as to make researcher to route for other pharmacological activities.

METHODS

Plant material, authentication and extraction procedures
S. splendens plant were collected from Bhopal (Madhya Pradesh) and Hazaribag, (Jharkhand) and was authenticated by Dr. V.P. Prasad, Scientist-C, Botanical Survey of India, Government of India, Howrah, (West Bengal). The specimen no. PY/JVD 1026/2011 had been submitted to Faculty of Pharmaceutical sciences, Jyoti Vidhyapeeth Women’s University, Jaipur (Rajasthan). The air-dried roots were made into coarse powder and extracted with methanol, ethyl acetate and petroleum ether and percentage yield were calculated. The dried roots were extracted with hot continuous soxhlet apparatus for 72 hrs with three different solvents i.e. methanol, ethyl acetate and petroleum ether and concentrated under reduced temperature.

Preliminary phytochemical analysis
The various extracts of S. splendens were tested for different phytoconstituents such as alkaloids, glycosides, saponins, tannins, terpinoids, phenolic compounds, protein, carbohydrates using standard procedures [20].

In-vitro anti-oxidant activity
1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity
The DPPH assay of S. splendens extract was determined by the method as reported by Patil et al. (2009).

Preparation of standard ascorbic acid solutions
Different solutions (1-10 µg/ml) of the ascorbic acid were prepared in methanol. 1.5 ml of each solution of ascorbic acid were mixed with 1.5 ml of 200 µM DPPH solution and incubated for 30 minutes at room temperature in dark. Absorbance of each solution was taken after 30 minutes against methanol (as blank) at 517 nm [21,22].

Preparation of test solutions
Different solutions of the S. splendens extract were prepared in methanol to give concentrations (10-100 µg/ml). 1.5 ml of each solution of S. splendens extract was mixed with 200 µM DPPH solution and incubated for 30 minutes at room temperature in dark. Absorbance of each solution of S. splendens extract was taken after 30 minutes against methanol (as blank) at 517 nm [21,22].
Preparation of control solution

For control, 1.5 ml of methanol was mixed with 200 µM DPPH solution and incubated for 30 minutes at room temperature in dark. Absorbance of the control was taken after 30 minutes against methanol (as blank) at 517 nm.

Percentage inhibition was calculated using equation (1), while IC_{50} values were estimated from the % inhibition versus concentration plot, using a non-linear regression algorithm. The data were presented as mean values ± standard deviation (n=3) [21,22].

\[
\% \text{ inhibition} = \left(\frac{Ac - (At - Ab)}{Ac} \right) \times 100
\]

Where Equation (1)

\% = Percentage inhibition

Ac = Absorbance of control (methanol and 200 µM DPPH solution)

At = Absorbance of ascorbic acid/plant extract with 200 µM DPPH solution after 30 minutes.

Ab = Absorbance of ascorbic acid/plant extract without 200 µM DPPH solution.

Ferric reducing power activity

This method is based on the principle of increase in the absorbance of the reaction mixture. Increase in the absorbance indicates increase in the antioxidant activity. Substances, which have reduction potential, react with potassium ferricyanide \((\text{Fe}^{3+})\) to form potassium \(\text{Fe}^{2+}\); which then react with ferric chloride to form ferric ferrous complex that has an absorption maximum at 700 nm. Increase in absorbance of the reaction mixture indicates the reducing power of the Samples [23].

Antioxidant = Potassium ferricyanide + Ferric chloride → Potassium ferrocyanide + Ferrous chloride

Preparation of standard ascorbic acid solutions

Different concentrations (10-100 µg/ml) of the ascorbic acid were prepared in distilled water. 1ml of each solution of ascorbic acid was mixed with 2 ml of 0.1 M phosphate buffer solution and 600 µl of 100 mM \(\text{H}_2\text{O}_2\) solution. After 10 minutes absorbance of different concentration of ascorbic acid solutions was taken at 230nm [24].

Preparation of test solutions

Various concentrations (10-100 µg/ml) of the \(\text{S. splendens}\) aq. extract were prepared in distilled water. 1 ml of each solution of \(\text{aq. extract}\) was mixed with 2 ml of 0.1 M phosphate buffer solution and 600 µl of 100 mM \(\text{H}_2\text{O}_2\) solution. After 10 minutes (approximately) absorbance of different concentration of \(\text{S. splendens}\) extract solutions were taken at 230 nm [24].

Preparation of control solution

For control 2 ml of 0.1 M phosphate buffer solution was mixed with 600 µl of 100 mM \(\text{H}_2\text{O}_2\) solution. After 10 minutes absorbance of control was taken at 230 nm.

The percentage of inhibition was calculated by comparing the absorbance values of the control and test samples using Equation 1. IC_{50} values were estimated from the % inhibition versus concentration plot, using a non-linear regression algorithm [24].

\[
\% \text{ inhibition} = \left(\frac{Ac - (At - Ab)}{Ac} \right) \times 100
\]

Where,

\% = Percentage inhibition.

Ac = Absorbance of control (0.1 M phosphate buffer solution and \(\text{H}_2\text{O}_2\)).

At = Absorbance of ascorbic acid/plant extract with \(\text{H}_2\text{O}_2\) after 10 minutes.

Ab = Absorbance of ascorbic acid/plant extract without \(\text{H}_2\text{O}_2\).

Estimation of total phenolic content (TPR)

The amount of total TPC in extracts was determined with the Folin–Ciocalteu reagent. Gallic acid (GA) was used as a standard and the total phenolic were expressed as mg/g GA equivalent (GAE). Concentration of 0.01, 0.02, 0.03, 0.04 and 0.05 mg/ml of GA were prepared in methanol. Concentration of 0.1 and 1 mg/ml of plant extract were also prepared in methanol and 0.5 ml of each sample were introduced in to test and mixed with 2.5 ml of a 10 fold dilute Folin–Ciocalteu reagent and 2 ml of 7.5% sodium carbonate. The tubes were covered with paraffilm and allowed to stand for 30 minutes at room temperature before the absorbance was read at 760 nm spectrophotometrically. All determination was performed in triplicate. The Folin–Ciocalteu reagent is sensitive to reducing compounds including polyphenols. They produce a blue color upon reaction. This blue color was measured spectrophotometrically.
Results

The successive solvent extraction was done using petroleum ether, ethyl acetate and methanol using standard procedure. The behavior of various extracts like texture and colour and extractive yield were calculated.

DPPH free radical scavenging activity

The DPPH radical scavenging activity of petroleum ether extract of S. splendens (PEESS), ethyl acetate extract of S. splendens (EAESS) and methanol extract of S. splendens (MESS) roots were detected and compared with ascorbic acid. The percentage inhibition (% inhibition) at various concentration (10-100 μg/ml) of PEESS, EAESS and MESS as well as standard ascorbic acid (1-10 μg/ml) were calculated and plotted in Fig. 1. The \(IC_{50} \) values of ascorbic acid were 25.07 μg/ml, PEESS (126.25 μg/ml), EAESS (70.88 μg/ml) and MESS (67.61 μg/ml).

Ferric reducing power activity

The ferric reducing capabilities of PEESS, EAESS and MESS roots were detected and compared with ascorbic acid. The mean absorbance at various concentration (20-100 μg/ml) of PEESS, EAESS and MESS as well as standard ascorbic acid (20-100 μg/ml) were calculated and plotted in Fig. 2. The ferric reducing capabilities were found to increase with increasing concentration of various extract as well as standard ascorbic acid.

H_2O_2 scavenging activity

The \(H_2O_2 \) scavenging activity of PEESS, EAESS and MESS roots were detected and compared with ascorbic acid. The percentage inhibition (% inhibition) at various concentration (10-100 μg/ml) of PEESS, EAESS and MESS as well as standard ascorbic acid (10-100 μg/ml) were calculated and plotted in Fig. 3. The \(IC_{50} \) values are calculated from graph and were found ascorbic acid (36.27 μg/ml), PEESS (145.13 μg/ml), EAESS (95.57 μg/ml) and MESS (64.11 μg/ml).

Total phenolic contents (TPC)

The TPC in PEESS, EAESS and MESS roots were estimated using standard GAE of phenols. The various concentration of GA (10-50 μg/ml) calibration curve was plotted and the results were given in Table 1 and in Fig. 4. The TPC for PEESS, EAESS and MESS were obtained for 1 mg/ml of extracts from TPC calibration of GA and the result are given in Table 2. The phenolic compounds are absent in the petroleum ether. The TPC for EAESS and MESS were calculated using standard calibration curve (y = 0.007x + 0.056, \(R^2 = 0.995 \)) and found to have 202.06±0.611 and 213.0±0.721 mg/g equivalent of GA respectively.

Total flavanoid content (TFC)

The TFC in PEESS, EAESS and MESS roots were estimated using standard rutin equivalent of phenols. The various concentration of rutin (25-100 μg/ml) calibration curve was plotted and the results were given in Table 3 and in Fig. 5. The TFC for PEESS, EAESS and MESS roots were calculated using standard calibration curve (y = 0.001x - 0.118, \(R^2 = 0.985 \)).

Thus the goodness of fit was found to be good for selected standard curve. By putting the absorbance of test sample (y = absorbance) in line of regression of above mentioned GA [25].

Total flavonoids determination

Total flavonoids were measured by a colorimetric assay according to Dewanto et al. An aliquot of diluted sample or standard solution of rutin was added to a 75 μl of NaNO_2 solution, and mixed for 6 minutes, before adding 0.15 mL AlCl_3 (100 g/L). After 5 minutes, 0.5 mL of NaOH was added. The final volume was adjusted to 2.5 ml with distilled water and thoroughly mixed. Absorbance of the mixture was determined at 510 nm against the same mixture, without the sample, as a blank. Total flavonoid content was expressed as mg rutin/g dry weight (mg rutine/g DW), through the calibration curve of rutin. All samples were analyzed in three replications.

Thus the goodness of fit was found to be good for selected standard curve. By putting the absorbance of test sample (y = absorbance) in line of regression of above mentioned GA [25].
DISCUSSION

The S. splendens roots were made coarse powder and extracted with using petroleum ether, ethyl acetate and methanol as solvent using standard procedure. The various extracts of S. splendens roots were tested for different phytoconstituents like alkaloids, glycosides, saponins, tannins, terpenoids, reducing sugars, phenolic compounds, flavonoids, protein, carbohydrates and volatile oils. The phenolic and flavonoids are widely distributed secondary metabolites in plants having anti-oxidant activity and have wide range of biological activities as anti-apoptosis, anti-aging, anti-carcinogen, anti-inflammatory, anti-atherosclerosis, cardiovascular protection and improvement of endothelial function, as well as inhibition of angiogenesis and cell proliferation activities [29,30]. Recent studies have shown that many dietary polyphenolic constituents derived from plants are more effective antioxidants in-vitro than vitamins E or C, and thus might contribute significantly to the protective effects in-vivo [31].

In-vitro antioxidant studies are widely carried to screen various plant containing phenolic and flavonoids constituents. Plant derived antioxidant compounds, flavonoids and phenolics have received considerable attention because of their physiological effect like antioxidant, anti-inflammatory, anti-tumor activities and low toxicity compared with those of synthetic phenolics antioxidant such as butylated hydroxyanisole, butylated hydroxytoluene and Propyl gallate [32,33].

DPPH is a purple colored stable free radical; when reduced it becomes the yellow-colored diphenyl-pirycyl hydrazine. DPPH radicals react with suitable reducing agents and then electrons become paired-off and the solution loses colour stoichimetrically with the number of electrons taken up [34]. Such reactivity has been widely used to test the ability of compounds/plant extracts to act as free radical scavengers [35]. In this present study, the DPPH radical scavenging activity of MESS, PEESS and EAESS roots were detected and compared with ascorbic acid. The IC50 values for DPPH assay of for methanolic extract was found maximum, followed by ethyl acetate extract and for petroleum ether extract was minimum. Though the extracts showed good DPPH scavenging activity, it was less effective than standard ascorbic acid. The DPPH scavenging activity and have wide range of biological activities as anti-apoptosis, anti-aging, anti-carcinogen, anti-inflammatory, anti-atherosclerosis, cardiovascular protection and improvement of endothelial function, as well as inhibition of angiogenesis and cell proliferation activities [29,30].

In ferric reducing antioxidant power assay, a yellow color of the test solution changes to various shades of green and blue is depending on the reducing power of each compound. The presence of radicals (i.e. antioxidant) causes the conversion of the Fe3+/ferricyanide complex used in this method to the ferrous form. Therefore by measuring the formation of pearls prussian blue spectrosocopically, the Fe2+ concentration can be monitored; a higher absorbance indicates a higher reducing power. The reductive capabilities of PEESS, EAESS and MESS roots were detected and compared with ascorbic acid. The methanolic extract showed highest reducing power, followed by ethyl acetate extracts and petroleum ether extracts respectively. The increased reducing power in the extracts indicated that some components in the extract were electron donors that could react with the free radicals to convert them into more stable products to terminate radical chain reaction. Antioxidants are strong reducing agents and this is principally based on the redox properties of their hydroxyl groups and the structural relationships between different parts of their chemical structure [36,37].

H2O2, a biologically relevant, non-radical oxidizing species, may be formed in tissues through oxidative processes. H2O2 which in turn generate •OH resulting in initiation and propagation of lipid peroxidation [37]. The H2O2 scavenging activity of PEESS, EAESS and MESS roots were detected and compared with ascorbic acid. The IC50 values for H2O2 scavenging activity of for methanolic extract was found maximum followed by ethyl acetate extract and for petroleum ether extract was minimum. Though the extracts showed good H2O2 scavenging activity. The antioxidant activities of S. splendens roots were determined by using four in vitro assays: (1) DPPH, (2) FE2+/ferricyanide, (3) ferric reducing antioxidant power and (4) H2O2.
scavenging activity but it was less effective than standard ascorbic acid. The ability of the extracts to quench OH., seems to be directly related to the prevention of the lipid peroxidation and appears to be moderate scavenger of active oxygen species, thus reducing rate of chain reaction [38].

The TPC in PEESS, EAESS and MESS roots were estimated using standard GAe of phenolics. The phenolic compounds are absent in the petroleum ether. The TPC for EAESS and MESS were found to have 202.06 and 213.00 mg/g equivalent of GA respectively. The methanolic extract was found to have maximum phenolic components and which may be one the reason of its to possess maximum antioxidant activity then other two extracts [39].

But in TPC, it was found methanolic extract to possess maximum 148.66 mg/g equivalent of rutin then other ethyl acetate (121.66 mg/g Eq.). Flavonoids play some important pharmacological roles against diseases, such as cardiovascular disease, cancer, inflammation and allergy and other oxidative stress related diseases [39].

From, above discussion, it was clear that the most powerful anti-oxidant extract is MESS roots.

CONCLUSION
It can be concluded that S. splendens roots extracts possess anti-oxidant activities and the potency of anti-oxidant activities depends on the type of extract. The MESS roots possess highest anti-oxidant activity in-vitro. This anti-oxidant power depends on total phenolic and flavonoid contents on particular extract.

REFERENCES