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ABSTRACT

Objective: This study aimed to identify potential glucokinase activators from Zimbabwean natural products using virtual screening techniques.

Methods: Twenty-one compounds filtered from ChEMBL ID 3820 (pEC50 ≥ 8) were used to generate a pharmacophore model, validated with DUD-E data. This 
model was employed to screen the 6,220 compounds in the Zimbabwe Natural Products Database (ZiNaPoD) using LigandScout. Hit compounds were docked 
with glucokinase (protein ID 4NO7) using AutoDock Vina and AutoDock 4 in PyRx, followed by adsorption, distribution, metabolism, and excretion (ADME) 
screening by SwissADME. Molecular dynamics simulations were conducted on the resulting complexes using the CHARMM36m force field on GROMACS.

Results: The validated pharmacophore model (80% accuracy, 95% sensitivity, 80% specificity) produced 149 hits, 16 of which had binding energies 
≤ −8 kcal/mol after the two rounds of molecular docking. The ADME analysis narrowed the selection to four compounds, with binding energies 
ranging from −8.35 to −9.82 kcal/mol. All four demonstrated stability in molecular dynamic simulations, with average root mean square deviation 
(RMSD) values ranging from 1.491 to 3.835 Å. The Sphenostylisin I and Dihydroxymethyl dihydroxybenzyl chromanone (DMDBC) complexes exhibited 
the highest stability with average RMSD values of 1.491±2.794 Å and 2.875±1.452 Å, respectively. They also exhibited low-binding free energies of 
−30.30±0.38 and −30.20±0.49 kcal/mol, making them promising targets.

Conclusion: Four potential glucokinase activators were identified, with Sphenostylisin I and DMDBC showing promise as candidates for developing 
new diabetes treatments due to their stability, favorable binding, and absence of liver-toxic groups.

Keywords: Diabetes mellitus, Glucokinase, Molecular docking, Molecular dynamics, Natural products, Pharmacophore modeling, Virtual screening, 
Zimbabwe.

INTRODUCTION

The global prevalence of diabetes has seen a significant increase over the 
past two decades and is projected to exceed 12.5% by 2030, highlighting 
a growing health challenge worldwide [1]. Type 2 Diabetes Mellitus 
(T2DM), which is the insensitivity of insulin receptors (pancreatic 
beta cells) leading to hyperglycemia, accounts for 90% of all diabetes 
cases [2]. Due to the high cost, general lack of conventional medication, 
and lifestyle, a lot of people, especially in low-income countries, use 
medicinal plants to achieve glycemic control [3]. This is especially 
true for numerous Asian and African communities. In Zimbabwe, 
almost 60% of the recorded 850,000 people living with diabetes were 
found to achieve glycemic control using herbal medicine [4]. Although 
this system appears to be effective, most of these medications are 
administered by traditional healers without consideration for their 
mechanisms of action, potential side effects, or underlying toxicities. To 
address these gaps, experimental studies are conducted to evaluate the 
effects of the molecules under investigation on the therapeutic target.

Numerous studies have identified multiple therapeutic targets for 
managing T2DM, each with distinct mechanisms of action, side effects, 
and other properties [2]. This led to the discovery of classes of drugs 
associated with certain therapeutic targets, with some classes being 
explored more than others due to seemingly positive results. These 

established classes include Sulfonylureas (SU), SGLT (Sodium-Glucose 
Cotransporter Type 2 inhibitors), GLP1R (Glucagon-like Peptide-1 
Receptor agonists) and DPP4 (dipeptidyl peptidase-4 inhibitors). These 
and other classes are responsible for over 66 diabetes drugs currently 
circulating [2]. Despite all these, only 30–50% of people with diabetes 
achieve glycemic control i.e. glycated hemoglobin (HbA1c) <7.0% (<53 
mmol/mol) [5]. This is due to different factors including; struggle by 
patients to adhere to medication, lifestyle factors, socioeconomic 
factors like lack of access to adequate medication, comorbidities like 
hypertension leading to adverse effects of drug–drug interactions, and a 
general individual variability to treatment influenced by genetic factors 
[5,6]. This means that the search for better drugs remains ongoing, 
and one of the best methods for discovering new drugs is by either 
discovering new targets or exploring underexplored targets. One of 
these promising targets is Glucokinase (GK), also known as Hexokinase 
IV or Hexokinase D [2,7–9]. GK is mainly expressed in the cells of the 
pancreas and liver in the human body [10].

In pancreatic beta cells, its primary job is to regulate insulin release 
based on glucose levels by phosphorylating glucose and using glucose 
metabolism to create a significant amount of adenosine triphosphate 
(ATP) as blood glucose levels rise [8]. Furthermore, it deactivates the 
potassium ATP channels on the islet cell surface, as a result, when Ca2+ 
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influx occurs, the islet cells release insulin, which lowers the blood 
glucose content [8]. It can exist in 3 states; closed state, open state, and 
super-open state. However, only the first two states are responsible for 
its glucose regulatory activities [8]. A glucokinase activator (GKA) is a 
molecule that can bind to an allosteric site of GK and keep it from going 
to the third state [8].

In liver cells, lowering of blood glucose levels is the result of the 
GK enzyme converting glucose to Glucose-6-Phopsphate (G-6-P), 
which in turn causes glucose to be absorbed, stored as glycogen, and 
inhibited in liver hepatocytes during the process of gluconeogenesis 
(the manufacture of glucose from non-carbohydrate sources) [9]. GK 
regulating proteins (GKRP) can competitively bind GK with glucose, 
prevent GK from catalyzing the process of glucose phosphorylation to 
G-6-P, and regulate GK activity in liver cells [8]. Small molecules that 
connect allosterically to the GK enzyme or interfere with the GK-GKRP 
complex can work as GKAs [9].

GK activity was discovered in the 1990s and it gained the attention 
of numerous scientists, leading to a lot of study into GKAs [7]. This 
eventually led to clinical trials of several GKAs including RO028167, 
AMG 151 and Piragliatin, but none have yet to reach the market due 
to inappropriate influences on the normal system leading to adverse 
effects which include hypoglycemia, the start of fatty liver leading to 
glucolipotoxicity, and hepatic cell lipidosis leading to a high risk of 
hyperlipidemia [8,9,11]. These adverse effects are predominant in 
synthetic GKAs and to deal with them, only GKAs with appropriate 
influence on kinetic parameters of multiple GK targets such as 
Dorzagliatin and TTP-399 are currently under investigation in Phase-III 
clinical trials [11,12].

Although most attention is on synthetic GKAs, an interest in plant-
derived molecules for GKA development is growing due to the high 
number of plants known to possess anti-diabetic activity, based on 
their ethnopharmacological data, but with little experimental data 
and no clinical data available [13]. This is especially true for the 
majority African countries, including Zimbabwe, which boasts unique 
biodiversity and a wealth of traditional medicinal uses [3]. While natural 
products have been explored as GKAs, few studies focus on biodiversity-
rich regions like Zimbabwe. To initiate this drug discovery research, 
computational methods like virtual repository screening are ideal to 
inexpensively ascertain the suitability of certain ligands binding with 
adequate stability to a certain target, as well as to ascertain possible 
adverse events. The Zimbabwe Natural Products Database (ZiNaPoD) 
is a diverse repository of therapeutic plants from Zimbabwe, compiled 
through extensive literature review. Currently under construction, 
it includes approximately 340 unique plants and 6,220 compounds, 
selected primarily for their documented traditional medicinal use. 
This research aims to use the computational methods; pharmacophore 
modeling, molecular docking, Absorption, Distribution, Metabolism 
and Excretion (ADME) screening and molecular dynamics simulations; 
to virtually screen the ZiNaPoD for potential GKAs.

METHODS

Hardware and software
The project was conducted on a Lenovo_Legion T5 26IAB7 12th Gen 
Intel(R) Core™ i7-12700 with a 2.1GHz CPU, 128GB RAM, and a 
64-bit Windows 11 Version 22H2 operating system, though some 
processes were executed on an HPC using ssh access. KNIME analytics 
platform (version 5.2.0) was used for the preparation of the small 
molecules and dataset cleaning. For the pharmacophore modeling 
and screening, the LigandScout 4.5 build 20230509 [i1_10] software 
by Inte: Ligand GmbH was used. AutoDockTools (version 1.5.7) was 
used for the preparation of the protein while AutoDock (version 4.2.6) 
and AutoDock Vina (version 1.2.0) were used on PyRx (version 1.1) 
for the molecular docking, and BioVia’s Discovery Studio Visualizer 
(version 24.1.0.23298) was used for the visualization of the molecular 
interactions along with UCSF ChimeraX (version 1.6.1) and the Protein-
Ligand Interaction Profiler (PLIP) (https://plip-tool.biotec.tu-dresden.

de/plip-web/plip/) [14,15]. The online tool SwissADME (http://www.
swissadme.ch/) was used for ADME property screening, then GROMACS 
(version 2023) was used along with the CHARMM-GUI interface 
(https://charmm-gui.org/) for molecular dynamic simulations, then 
gmx_MMPBSA (Version 1.6.4) was used for binding energy analysis.

Dataset acquisition and preparation
A search of the ChEMBL (https://www.ebi.ac.uk/chembl/) target 
protein with the id 3820 gave a result of 1378 compounds with 
recorded half maximal effective concentration (EC50) values. Filtration 
resulted in a total of 25 compounds with pEC50 values higher than or 
equal to 8 which were then regarded as “active.” These molecules were 
converted to 3D using the RDKit toolkit on KNIME and saved as a single 
SDF file. They were then used for the generation of pharmacophores, 
ignoring 4 of the compounds, thus 21 compounds were included in the 
pharmacophore generation process. For validation, labeled data were 
downloaded from the DUD-E (https://dude.docking.org/) database 
as “actives” with 127 compounds and “decoys” with 4798 compounds 
after 5 decoy duplicates were removed.

Pharmacophore development and screening
Parameters for conformer generation were set such as maximum 
number of conformations set as 200 and Root Mean Square (RMS) 
threshold set as 0.8, then all other options were left on default. 
Ligand-based pharmacophore creation was used with scoring 
function pharmacophore-ft and atom overlap, pharmacophore type 
merged feature pharmacophore, number of omitted features were 
set as 4, maximum number of pharmacophore model set as 10, 
partially matching features as 1, and the feature tolerance factor was 
set as 1. iCon Best was used for all database generation for both the 
validation and library screening. After an optimum pharmacophore 
model was generated, 6220 compounds were then loaded from the 
ZiNaPoD database as the screening library. Virtual screening mode was 
performed using scoring function pharmacophore-ft with screening 
mode “match all query features”, retrieval mode “get best matching 
conformation”, and maximum number of omitted features was set to 0.

Validation of pharmacophore
The validation phase consisted of screening 2 libraries, one of known 
actives and another of recorded decoys from DUD-E. After screening, 
the Receiver Operating Characteristic (ROC) curve was plotted between 
the percentage retrieved actives (sensitivity) and percentage retrieved 
decoys (1-specificity). It came along with the Area Under Curve (AUC) at 
different percentages of the library screening, the Enhancement Factor 
(EF) at different percentages of the library screening, true positives (TP), 
and false positives (FP). True negatives (TN) and false negatives (FN) 
were calculated using the formulae TN = actives − TP, and FN = decoys 
− FP. The performance metrics: Sensitivity (SE), Specificity (SP), and 
Accuracy (AC) were calculated using the formulae SE TP

TP FN� �( ) , 
SP TN

TN FP� �( )
, and AC TP TN

Total compounds� �
( )

 [12].

Molecular docking
The protein structure with a PDB id of 4NO7, a resolution of 1.70 Å, 
determined using X-Ray diffraction, was selected as the target protein 
and retrieved from the Protein Data Bank (https://www.rcsb.org/) as 
a PDB file. This crystal structure was selected for different reasons, 
including that it is recorded in the active conformation of human 
glucokinase and is activated by a ligand named 2N8, which is recorded 
as Piragliatin on PubChem [16]. The online tool P2Rank is a fast, 
stand-alone, template-free tool that uses machine learning to predict 
ligand binding sites with superior accuracy compared to widely used 
tools [17]. Along with BioVia’s discovery studio, P2Rank was used to 
select the allosteric site (Fig. 1).

The crystal structure was loaded into AutoDockTools where water 
molecules were removed, polar hydrogens were added and Kolmann 
charges were computed, then it was saved as a pdbqt file and later 
loaded to the PyRx application. Piragliatin was added, as a control, to the 
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hits of pharmacophore modeling, then they were loaded to the KNIME 
analytics platform where they were converted from SMILES to 3d 
molecules, had Hydrogens added, and had their geometries optimized, 
then they were saved as a single SDF file which was later loaded to 
PyRx. The mmff94 energy field was used to minimize the loaded ligands 
which were then converted to the AutoDock format and loaded onto the 
screening platform. The grid box was set as Grid center X: −9.108; Y: 
3.147; Z: 20.313, number of points X: 40; Y: 40, Z: 40, and a spacing of 
0.375 in accordance with the number 1 active site according to P2Rank, 
BioVia’s Discovery Studio as well as previous studies [8,16,18]

An exhaustiveness of 120 was used with 200 modes created for the 
first docking round using the simplified scoring function on AutoDock 
Vina [19], with all other options left on default. Using the semi-empirical 
free energy scoring function on AutoDock 4 [20], the Genetic Algorithm 
was then used with 50 runs, 150 individuals in population, 2 500 000 
maximum number of energy evaluations, an rmsd-tolerance of 2.0 A, 
and all other options were left on default. The standard criterion for 

docking validation is determining the RMSD between the docked and 
crystallographic ligand positions, with success defined as an RMSD 
below 2 Å [21,22]. The native ligand was redocked for validation 
which was analyzed using Biovia’s Discovery Studio and DockRMSD. 
DockRMSD is useful for docking validation because it provides 
symmetry-corrected RMSD calculations by identifying the optimal 
atomic correspondence between the reference and docked ligands, 
ensuring accurate pose evaluation even for molecules with symmetrical 
or interchangeable atoms [23].

ADME screening
Molecules with binding energies < −8.00 kcal/mol were loaded to 
the online tool SwissADME where the following parameters were 
assessed: Pharmacokinetics, Drug-Likeness Filters, Safety and Toxicity, 
Bioavailability, Water Solubility, and Lipophilicity (Table 1) [24].

Molecular dynamics
Molecular dynamic (MD) simulations were performed using GROMACS 
to investigate the structural and dynamic properties of the system [30]. 
The CHARMM36m force field was utilized to generate the topology 
and parameter files through the CHARMM-GUI interface. The system 
was solvated in a rectangular simulation box filled with TIP3P water 
molecules, and ion placement was conducted using the Monte Carlo 
method to neutralize the system and achieve a physiological NaCl 
concentration of 0.15 M. The pH of the system was set to 7.4 to simulate 
near-physiological conditions [31,32].

Energy minimization was conducted using the steepest descent 
algorithm to remove steric clashes and optimize system stability. 
The system was subsequently equilibrated for 100 ps. Temperature 
control was maintained at 310 K through the V-rescale thermostat, 
while the pressure was regulated at 1 bar using the C-rescale barostat. 
The production phase of the simulation was performed for 100 ns 
under the NPT ensemble, with a time step of 2 fs. Bond constraints 
involving hydrogen atoms were applied using the LINCS algorithm 
to ensure accurate integration of motion. Long-range electrostatic 
interactions were calculated using the Particle Mesh Ewald (PME) 
method, with a 1.2 nm cutoff for both electrostatic and Van der Waals 
interactions. Simulation trajectories were saved every 10 ps for 
subsequent analyses.

Table 1: ADME screening rationale used for docking results, including categories, parameters, brief descriptions, and selection criteria 
(in brackets)

Category Parameter Description 
Pharmacokinetics (Any 
molecule that tested positive 
in at least 3/6 of the given 
parameters was considered 
for subsequent analysis)

Gastrointestinal (GI) absorption The process by which a drug or substance is absorbed from the 
gastrointestinal tract into systemic circulation is critical to its bioavailability. 
A higher GI absorption indicates greater systemic absorption of the 
drug [25]. (High GI absorption was desired)

P-glycoprotein substrate (Substrates 
were desired)

Among other effects, they lead to the increase in the GI absorption power of 
drugs [26].

CYP 450 inhibition: CYP2C19, 
CYP2C9, CYP2D6, CYP3A4

Inhibition of any of the enzymes can cause disruptions like drug–drug 
interactions that can lead to adverse events [27]. (Non-inhibitors were 
counted)

Drug-Likeness Filters: Lipinsiki, Ghose, Veber, Egan. These are set rules to determine whether a molecule has the capacity to be 
developed into a drug.

Bioavailability Bioavailability Score
Safety and Toxicity PAINS (Pan Assay Interference 

Compounds) 
They usually indicate high chances of false positives when detected.

Brenk These are small fragments of a molecule that could be toxic, chemically 
reactive, metabolically unstable, etc., 

Water solubility (Log S (ESOL), Log S (Ali), and Log S 
(SILICOS-IT)

This is an average of the named solubilities. Better solubility enhances drug 
absorption into the bloodstream, improving delivery to the site of action [28].
(Only molecules that were considered moderately soluble or better were 
included)

Lipophilicity Consensus Log Po/w This is calculated from various lipophilicity parameters. A lipophilicity range 
of 1–3 strikes a balance between good solubility, permeability, and binding 
affinity, while minimizing potential toxicity [29].

Fig. 1: Highest ranked predicted binding sites of PDB 4NO7, the 
allosteric site is shown in yellow while the orthosteric (active) 

site is shown in red
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Post-simulation analyses included the calculation of Root Mean 
Square Deviation (RMSD) to evaluate overall structural stability, Root 
Mean Square Fluctuation (RMSF) to assess the flexibility of individual 
residues throughout the simulation, and Molecular Mechanics Poisson-
Boltzmann Surface Area/Generalized Born Surface Area (MM-PBSA/
MM-GBSA) for the binding free energy from the complex between ligand 
and protein. The graphical plots were viewed using xmgrace while the 
MM-PBSA/MM-GBSA analyses were performed using gmx_MMPBSA on 
a Conda environment [33,34]. Analyses were done for entirety of the 
simulation process.

RESULTS AND DISCUSSION

Pharmacophore modeling
The pharmacophore model validation involved selecting a model that 
balanced the chosen validation parameters to optimize selection while 
minimizing the exclusion of true positives. This balance was achieved 
with model 6, as highlighted in Table 2.

Model 6 (Fig. 2) was selected for screening the library, yielding a hit 
rate of 2.4%, corresponding to 149 hits out of 6,220 compounds in the 
ZiNaPoD database. Fig. 2a illustrates the pharmacophoric features of 
the model, which include two hydrogen bond acceptors, two aromatic 
rings, one hydrogen bond donor, and one hydrophobic group. Validation 
results demonstrated that model 6 is 80% accurate, 80% specific, and 
95% sensitive, offering optimal selectivity, as evidenced by the Receiver 
Operating Characteristics (ROC) curve in Fig. 2b.

Molecular docking
Docking validation involves assessing the docking protocol using 
methods appropriate to the available structural data. Since this 
simulation utilized the same binding site as the native ligand, re-docking 
was deemed the most suitable validation approach. The re-docking 
process was performed using DockRMSD, resulting in an RMSD of 
0.8280 Å (Fig. 3).

To achieve more refined results, two rounds of molecular docking 
were conducted. The first round, performed using AutoDock Vina, 
identified 40 compounds with binding energies below −8 kcal/mol. 
These compounds were further screened using AutoDock 4, resulting 
in 17 compounds (including the reference compound Piragliatin) with 
binding energies below −8 kcal/mol, as listed in Table 3. The reference 
compound Piragliatin exhibited the lowest binding energy (−12.41 
kcal/mol), followed by Robinetinidol 3-O-gallate (−10.64 kcal/mol), 
Prostratol C (−10.44 kcal/mol), and Nitidulan (−10.19 kcal/mol). The 
remaining molecules showed binding energies ranging from −8.19 to 
−9.98 kcal/mol. These 17 compounds were subsequently subjected to 
ADME analysis, based on the criteria outlined in Table 1, leading to the 
selection of four compounds for further investigation.

The selected compounds exhibited ADME properties comparable to 
Piragliatin, with Atranorin showing the least favorable profile due to 
broken Brenk rules and its inability to act as a glycoprotein substrate, 
leading to higher toxicity potential. Similarly, Camptothecin also could 
not act as a glycoprotein substrate, though it adhered to all Brenk 
rules. In contrast,  Dihydroxymethyl dihydroxybenzyl chromanone 
(DMDBC) demonstrated an ADME profile similar to Piragliatin, while 
Sphenostylisin I showed a superior profile by avoiding interactions with 
three out of four CYP450 proteins, reducing the likelihood of system 
disruption. Although the top-ranking compounds showed higher 
binding energies compared to the reference compound Piragliatin, they 
demonstrated relatively low-binding energies: Atranorin (−8.35 kcal/
mol), Camptothecin (−9.82 kcal/mol), DMDBC (−8.53 kcal/mol), and 
Sphenostylisin I (−8.9 kcal/mol). In a study by Khamlich on the screening 
of Chinese traditional medicinal plant compounds for glucokinase 
activators, molecular docking yielded binding affinities ranging from 
−6.7 to −8.6 kcal/mol for Swertiamarin, Apigenin, Mangiferin, and 
Tatanan A [35]. Notably, Mangiferin, with a binding affinity of −7.7 kcal/
mol, had already been validated as a potential GKA through in vitro 
and in vivo studies [36]. These comparisons suggest a strong potential 

Table 2: Generated pharmacophore models validated using various metrics; the selected model is highlighted in yellow

Model AUC100%
1 EF1%

2 Sensitivity Specificity Accuracy Pharmacophore Exclusion Vols
1 0.9 26.1 0.827 0.933 0.931 H3, A4, A, HBA5, HBD6 22
2 0.9 26.9 0.827 0.935 0.932 H, A, A, HBA, HBD 22
3 0.89 28.5 0.803 0.933 0.93 H, A, A, HBA, HBD 23
4 0.91 27.7 0.835 0.931 0.929 H, A, A, HBA, HBD 22
5 0.86 30.9 0.732 0.957 0.952 H, A, A, HBA, HBA, HBD 32
6 0.94 24.5 0.953 0.799 0.803 H, A, A, HBA, HBA, HBD 32
7 0.91 22.2 0.913 0.792 0.796 H, A, A, HBA, HBA, HBD 31
8 0.92 19 0.961 0.782 0.786 A, A, HBA, HBA, HBD 25
9 0.95 27.7 1 0.639 0.649 A, A, HBA, HBA, HBD 25
10 0.94 27.7 1 0.631 0.64 A, A, HBA, HBA, HBD 23
1Area under the curve at 100% of the screening, 2Enrichment factor at 1%, 3Hydrophobic, 4Aromatic, 5Hydrogen bond acceptor, 6Hydrogen bond donor

Fig. 2: (a) Pharmacophoric features of the selected pharmacophore model, model 6, excluding exclusion volumes. (b) ROC plot of the 
selected pharmacophore model

ba
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for the selected compounds to function as GKAs. However, it is worth 
noting that, while Piragliatin also demonstrated promising results 
in preclinical trials and passed a double-blind, placebo-controlled, 
multiple-ascending-dose safety study in patients with type 2 diabetes 
mellitus [37], it ultimately failed in phase 2 clinical trials due to liver 
toxicity associated with long-term use. This toxicity arises from the 
metabolization of its cyclopentanone group into an alcohol in the 
liver [8]. As shown in Fig. 4, the oxygen of the cyclopentanone group 
lacks significant interaction with the protein, making it more prone to 
metabolic conversion into a toxic alcohol.

Despite slightly higher binding energies compared to Piragliatin, 
Sphenostylisin I and DMDBC formed extensive hydrophobic and 
hydrogen-bonding interactions, particularly with key residues such as 
ARG 63, TYR 214, and GLU 67, which likely contributed to their stability.

Atranorin and Camptothecin, while showing comparable or better 
binding energies, lacked robust π-π stacking or formed fewer stabilizing 
interactions, limiting their potential as glucokinase activators. These 
results suggest that Sphenostylisin I and DMDBC balance binding affinity 
and interaction profile, making them promising candidates for further 
investigation. A detailed examination of each compound also highlighted 
additional expected results, providing insights into their potential activity.

Atranorin is a depside containing aromatic rings, ester linkages, and an 
aryl aldehyde group (Fig. 5). While aldehydes are typically reactive, the 
aryl aldehyde group in Atranorin is expected to metabolize into safer 
byproducts, reducing the risk of liver damage [38]. In a study by Melo 
et al., Atranorin was shown to be non-cytotoxic and exhibited redox 
properties that provided cytoprotective effects, safeguarding SH-SY5Y 
cells from H2O2-induced oxidative stress and viability loss [39]. These 
redox properties enhance Atranorin’s potential as a dual-action GKA, 
improving glucokinase activity while protecting pancreatic cells from 
oxidative stress. This dual functionality makes it a strong candidate for 
further investigation. As shown in Table 4, the interaction profile of the 
Atranorin-Glucokinase complex is comparable to that of Piragliatin-
Glucokinase, particularly in the distribution of interaction types. 
Notably, the Atranorin-Glucokinase complex exhibits a higher number 
of hydrogen bonds than Piragliatin-Glucokinase, potentially leading to 
distinct functional properties, further supporting Atranorin’s potential 
as a GKA.

Camptothecin is a pentacyclic alkaloid (Fig. 6) that can exist in either 
its lactone or carboxylate form. Despite displaying a favorable ADME 
profile in this study, it is primarily researched as an anticancer agent 
due to its ability to target topoisomerase I, leading to DNA damage and 
apoptosis in cancer cells [40]. However, this mechanism also underpins 
its toxicity, making it a less suitable candidate as a GKA. Additionally, 
Camptothecin demonstrated predominantly hydrophobic interactions 
with GK (Table 4), differing significantly from the reference compound 
and contributing to its limited therapeutic efficacy [41]. These factors 
collectively reduce its potential as a viable GKA candidate.

DMDBC (Fig. 7) is a chromanone, an oxygen-containing heterocyclic 
compound. While limited information is available on this specific 
molecule, other chromanones have demonstrated various therapeutic 
properties with low toxicity [41,42]. This highlights a gap in the 
literature, warranting further analysis of DMDBC. Notably, its binding 
interactions with GK (Table 4) are well-distributed, even exceeding 
those of Atranorin, which reinforces its potential as a GKA.

Sphenostylisin I is a carbonyl compound featuring a benzofuran and 
a phenyl sidechain (Fig. 8). Although limited data exists on its specific 
behavior, its individual components provide some insight into potential 
toxicity. The carbonyl group increases susceptibility to reduction 
and conjugation reactions in the liver, potentially forming various 
metabolites. This is similar to the metabolic pathways observed in 
Spirotetramat analogs, where specific functional groups influenced 

Fig. 3: Docking validation. The docked ligand (red), compared to 
the native ligand (blue) using BioVia discovery studio

Fig. 4: Piragliatin-Glucokinase complex, (a) the surface view of the ligand (orange) docked inside the protein (blue), (b) 3D view of the 
interactions of the ligand (orange) with the close ammino residues (blue), (c) 2D view of the interactions of the central ligand with 

surrounding ammino acid residues Despite Piragliatin’s toxicity, its interaction with the allosteric site of GK activates the enzyme. This 
interaction was evaluated for the top-ranking compounds (Table 4)

cba
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bioactivity and metabolism [43]. However, these moieties are generally 
expected to yield less severe effects. Related compounds exhibit diverse 

biological activities, including antioxidant, anti-inflammatory, and 
anticancer properties, partly due to their metabolic products [44,45]. 

Table 4: Interactions of Ligands with Glucokinase

Ligand Interaction type Residue (Distance, Angstrom)
Piragliatin Hydrophobic VAL 62 (3.58); THR 65 (3.58); ILE 211 (3.55); ILE 211 (3.87); TYR 214 (3.26); TYR 214 (3.77); TYR 214 (3.74)

Hydrogen donor ARG 63 (1.84); GLU 221 (3.35)
Hydrogen Acceptor ARG 63 (2.15)
Pi-Pi Stacking TYR 214 (4.47)

Atranorin Hydrophobic ILE 211 (3.06); ILE 211 (3.07); TYR 214 (3.17); TYR 214 (3.59); VAL 455 (3.85)
Hydrogen donor THR 65 (2.28); GLY 68 (1.84); GLU 221 (2.87)
Hydrogen Acceptor ARG 63 (2.18); GLU 221 (2.84)
Pi-Pi Stacking TYR 214 (3.60)

Camptothecin Hydrophobic VAL 62 (3.01); ARG 63 (3.64); THR 65 (3.56); ILE 159 (3.96); ILE 211 (3.77); TYR 214 (3.76); VAL 452 
(3.45); VAL 455 (3.47)

Hydrogen donor ARG 63 (1.86)
DMDBC Hydrophobic VAL 62 (3.19); GLU 67 (3.82); ILE 211 (3.23); TYR 214 (3.19); TYR 214 (3.83)

Hydrogen donor THR 65 (2.46); GLY 68 (2.16); HIS 218 (3.37)
Hydrogen Acceptor ARG 63 (2.05); GLU 67 (2.92); CYS 220 (1.71)
Pi-Pi Stacking TYR 214 (4.43)

Sphenostylisin I Hydrophobic THR 65 (3.67); ILE 211 (3.59); TYR 214 (3.39); TYR 214 (3.57); TYR 215 (3.31); VAL 455 (2.94)
Hydrogen donor THR 65 (1.93); GLU 67 (3.76); GLY 68 (2.57); HIS 218 (3.25)
Hydrogen Acceptor ARG 63 (2.70); GLU 67 (3.13); CYS 220 (1.76)
Pi-Pi Stacking TYR 214 (3.79); TYR 214 (4.50)

Fig. 5: Atranorin-Glucokinase complex, (a) the surface view of the ligand (orange) docked inside the protein (blue), (b) 3D view of the 
interactions of the ligand (orange) with the close ammino residues (blue), (c) 2D view of the interactions of the central ligand with 

surrounding ammino acid residues

cba

Fig. 6: Camptothecin-Glucokinase complex, (a) the surface view of the ligand (orange) docked inside the protein (blue), (b) 3D view of 
the interactions of the ligand (orange) with the close ammino residues (blue), (c) 2D view of the interactions of the central ligand with 

surrounding ammino acid residues

cba
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Interaction analysis (Table 4) reveals that Sphenostylisin I forms more 
hydrogen bonds with GK than Piragliatin, indicating a broader range of 
interactions that could enhance its potency as a drug.

Molecular dynamics
Molecular dynamic (MD) simulations are performed to evaluate the 
stability of a system. The outcomes of an MD run can be analyzed 
through various approaches, including graph plotting, structural 
visualization, and energy analyses. Following ADME screening, the 
selected molecular complexes were subjected to MD analysis. In this 
study, key graphical methods such as RMSD, RMSF, radius of gyration 
(Rg), and principal component analysis (PCA) were employed. These 
analyses were complemented by energy evaluations using MMGBSA 
and MMPBSA. All analyses were conducted over 100 ns simulation runs.

RMSD analysis
The RMSD plot is a key tool in MD analysis, used to assess the stability 
and conformational changes of protein-ligand complexes throughout 
the simulation. A stable complex typically exhibits minor fluctuations 
in RMSD values following the initial equilibration period, signifying that 
the system has reached a stable conformation. Conversely, significant 
deviations in RMSD values indicate major structural rearrangements, 
which can provide valuable insights into the binding mechanism and 
dynamic behavior of the complex [46].

The ligands, labeled as “UNK,” were aligned to the backbone for RMSD 
analysis, revealing an average RMSD range of 1.491 to 3.835 Å (Fig. 9). 
Among the ligands, Sphenostylisin I demonstrated the highest stability, 

with the lowest average of 1.491±2.794 Å. The large range is due to 
the great fluctuations during the initial nanoseconds of the simulation 
which could be attributed to its unique interactions with the protein, 
such as the two pi-pi stacking interactions, which may require more 
time to stabilize. DMDBC also showed high stability, with an average 
of 2.875±1.452 Å, showing minimal fluctuations throughout the 

Fig. 9: RMSD plots of the top-ranked ligands’ activity during the 
simulation, highlighting relatively stable systems with notable 

differences

Fig. 7: DMDBC -Glucokinase complex, (a) the surface view of the ligand (orange) docked inside the protein (blue), (b) 3D view of the 
interactions of the ligand (orange) with the close ammino residues (blue), (c) 2D view of the interactions of the central ligand with 

surrounding ammino acid residues

cba

Fig. 8: Sphenostylisin I-Glucokinase complex, (a) the surface view of the ligand (orange) docked inside the protein (blue), (b) 3D view of 
the interactions of the ligand (orange) with the close ammino residues (blue), (c) 2D view of the interactions of the central ligand with 

surrounding ammino acid residues

cba
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simulation. Camptothecin displayed an average of 2.357±2.343 Å, 
showing considerable stability. Atranorin displayed the lowest stability 
with an average of 3.835±1.684 Å according to RMSD analysis. These 
findings highlight the potential of Sphenostylisin I and DMDBC as 
promising GKAs. To further explore localized flexibility and stability, an 
RMSF analysis was conducted.

RMSF analysis
RMSF is another key metric in protein-ligand MD studies, used to 
quantify the flexibility of individual amino acid residues. It provides 
crucial insights into the dynamic behavior of the protein-ligand 
complex by identifying residues with significant fluctuations, which 
may play vital roles in ligand binding and protein function [47]. 
Residues involved in critical interactions, such as hydrogen bonds or 
hydrophobic contacts, often exhibit lower RMSF values, indicating their 
contribution to stable interactions. Furthermore, RMSF serves as an 
indicator of the complex’s overall stability, with lower values generally 
reflecting a more stable system [31].

The RMSF values for all complexes range from approximately 0.8 
to 2.2 Å, indicating considerable stability across most residues 
(Fig. 10). However, slight differences were observed, with Atranorin 
occasionally exhibiting marginally higher RMSF values, supporting 
its relatively lower stability as indicated by the RMSD analysis. The 
Sphenostylisin I complex displayed higher RMSF values at residue 
69 (2.849 Å) and residue 458 (2.285 Å), despite these residues not 
being directly involved in protein-ligand interactions. Interestingly, 
GLU 67 and GLY 68, located near residue 69, collectively contribute 
to three hydrogen bonds. The fluctuations at residue 69 reflect the 
dynamic nature of the local binding environment, suggesting that 
non-interacting residues can influence or be influenced by nearby 
interacting residues. These fluctuations may destabilize the hydrogen 
bonds involving GLU 67 and GLY 68, potentially affecting the stability 
of the interaction network.

Despite these fluctuations, the Sphenostylisin I complex maintained 
overall stability, similar to the other complexes, which were also 
affected in this region. DMDBC consistently exhibited the lowest RMSF 
values, reinforcing its potential as a strong GKA candidate. To gain 
further insights into the stability, functionality, and biological relevance 
of these complexes, compactness was evaluated through the radius of 
gyration (Rg) analysis, which offers additional context on their dynamic 
behavior [36].

Radius of gyration analysis
The radius of gyration (Rg) quantifies the compactness of a protein 
structure by calculating the root mean square distance of the 
protein’s atoms from its center of mass [48]. This metric facilitates 
comparisons between different molecular states or conditions, offering 
valuable insights into structural stability and dynamic behavior. Rg is 
particularly useful in understanding the conformational dynamics of 
macromolecules, such as revealing the degree of folding or unfolding in 
proteins, which is an essential aspect when assessing protein stability 
and interactions [48]. Similar to RMSD and RMSF, larger fluctuations in 
Rg values indicate reduced stability of the analyzed complexes.

All four systems shown in Fig. 11 exhibited low fluctuations, ranging 
from 23 to 24.5 Å, indicating general compactness. Sphenostylisin I 
demonstrated an initial rise from 22.8 Å to around 24 Å within the 
first 20 ns, after which it stabilized, with fluctuations of less than 
0.1 Å around its average value of 24 Å. This suggests overall system 
stability, supporting its potential as a GKA. DMDBC also maintained 
considerable stability throughout the simulation, with fluctuations of 
less than 0.1 Å from its average Rg value of 23.80 Å. Camptothecin 
showed the highest fluctuation, observed between 40 to 50 ns of 
the simulation. Atranorin displayed relative compactness, with 
fluctuations ranging from 23.25 to 24.5 Å. To gain further insights, 
PCA analysis was performed.

PCA analysis
Principal Component Analysis (PCA) complements traditional MD 
analysis by providing a more comprehensive view of molecular 
motions. It captures essential, collective movements, making it easier 
to interpret complex data. The principal components (PCs) derived 
from MD simulations are based on the eigenvectors of the covariance 
matrix, each reflecting a specific change in the protein’s trajectory [49]. 
A Free Energy Landscape (FEL) or Gibbs Energy Landscape is often 
used to visualize the system’s essential motions or conformations. 
In this visualization, the x-axis (PC1) and y-axis (PC2) correspond to 
the first and second principal components, capturing the primary and 
secondary variances in the dataset, respectively. The blue and green 
clusters represent the most stable conformational states of the system, 
where it remains for extended periods. Red regions between clusters 
indicate energy barriers that the system must overcome to transition 
between these stable states.

Eigenvectors were first calculated, and the dominant motions were 
identified by filtering the trajectories to focus on the most relevant 
movements. The Sphenostylisin I complex exhibits the highest stability, as 

Fig. 10: RMSF plots showing the behavior of the ammino residues 
in the top-ranked complexes during the simulation, highlighting a 

common trend of stability

Fig. 11: Rg plots of the top-ranked complexes during the MD run, 
showing low fluctuations and indicating stability
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Table 5: Average MM-G (P) BSA energies of the protein-ligand 
complexes with the standard error of the mean (SEM)

Glucokinase 
Complex

MMGBSA (kcal/mol)
Average±SEM

MMPBSA (kcal/mol)
Average±SEM

Atranorin −25.94±0.43 −19.88±0.41
Camptothecin −28.52±0.38 −22.17±0.38
Dihydroxy −30.20±0.49 −23.19±0.64
Sphenostylisin I −30.30±0.38 −23.90±0.56

indicated by its more concentrated cluster, despite some scattered points 
outside this cluster (Fig. 12d). This suggests that the Sphenostylisin I 
complex spends most of its time in a single conformation, indicating 
greater stability. The overall area of the blue/green region for DMDBC 
(Fig. 12c) is comparable to that of Sphenostylisin I, suggesting stability 
within a single conformation. However, the DMDBC landscape displays an 
almost separate region, which suggests some variability in conformations. 
In contrast, the Atranorin (Fig. 12a) and Camptothecin (Fig 12b) systems 
show larger regions with several red regions in between, indicating 
less stable systems. These results further support the potential of 
Sphenostylisin I and DMDBC as potential glucokinase activators. To 
further assess the binding stability of the protein-ligand interactions, MM-
PBSA/MM-GBSA analyses were performed to estimate the free energy of 
binding and quantify the stability of the molecular dynamics simulations.

MM-PBSA/MM-GBSA
MMPBSA/MMGBSA methods provide an accurate estimation of binding 
free energy, offering valuable insights into the strength and stability of 
protein-ligand interactions. These methods consider solvation effects, 
including both polar and non-polar contributions, which are crucial 
for modeling the energetics of the system in a biologically relevant 
environment [50]. Additionally, MMPBSA/MMGBSA can estimate the 
entropic contributions to binding, a factor that is often challenging 
to capture with other computational techniques. By comparing the 
calculated binding affinities with experimental data, these methods 
help validate the molecular dynamics simulations, ensuring that the 
observed interactions are reliable and biologically significant [51].

Since there is no direct method for running MM-GB(PB)SA 
calculations using GROMACS, a tool developed by Valdes-Tresanco 
et al., was employed. This tool, gmx_MMPBSA, enables complex 
calculations, including binding free energy and stability assessments. 
It is accompanied by detailed documentation, including tutorials and 
test/example files, making it highly accessible for novice users. [34]. 
The total average binding free energy (∆𝐺𝑏𝑖𝑛𝑑) is calculated from the 
individual energy of the system as follows [34]:

∆𝐺𝑏𝑖𝑛𝑑 = 〈𝐺𝐶omplex〉 − 〈𝐺𝑅eceptor 〉 − 〈𝐺𝐿igand〉

Whereas each of these energies is calculated individually 〈𝐺𝑥〉 as follows:

〈𝐺𝑥〉 = 〈𝐸𝑀𝑀〉 + 〈𝐺𝑠𝑜𝑙〉 − 〈𝑇𝑆〉

Where:
∆𝐸𝑀𝑀 = ∆𝐸𝑏𝑜𝑛𝑑𝑒𝑑 + ∆𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 = (∆𝐸𝑏𝑜𝑛𝑑 + ∆𝐸𝑎𝑛𝑔𝑙𝑒 + ∆𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙) + (∆𝐸𝑒𝑙𝑒 + 
∆𝐸𝑣𝑑𝑊)
ΔEMM = Molecular mechanical energy changes in the gas phase.
〈𝐺𝑠𝑜𝑙〉 = Energy of solvation
〈𝑇𝑆〉 = Temperature and entropy energy.

MM-GBSA analyses conducted over the entire MD run yielded relatively 
low-binding energy values, ranging from −25.51 to −30.68 kcal/mol 
(Table 5). In contrast, MM-PBSA analyses under the same conditions 
produced higher energy values, ranging from −19.47 to −24.46 kcal/
mol. The observed difference of 6–7 kcal/mol between the two methods 
reflects their distinct approaches to calculating binding free energy. This 
consistency across methods reinforces the reliability and robustness of 
the study’s findings.

Among the tested compounds, Sphenostylisin I exhibited the highest 
stability, with binding energies of −30.30 kcal/mol (MM-GBSA) and 
−23.90 kcal/mol (MM-PBSA), followed closely by DMDBC with values 
of −30.20 kcal/mol and −23.19 kcal/mol, respectively. These results 
align with other findings in this research, providing compelling 
evidence for the potential of Sphenostylisin I and DMDBC as GKAs. 
Although Atranorin and Camptothecin showed higher binding energies 
of −19.88 kcal/mol and −22.17 kcal/mol, respectively, their values 
still suggest reasonable stability, supporting their consideration as 
moderately stable complexes.

Sphenostylisin I and DMDBC demonstrated exceptional performance 
across various analyses in this study, underscoring their potential as 
GKAs. Although their molecular docking binding energies (−8.53 kcal/mol 
for DMDBC and −8.9 kcal/mol for Sphenostylisin I) were higher than 
Piragliatin’s (−12.41 kcal/mol), their interaction profiles and the findings 
from literature support their promise as therapeutic candidates. Their 
stability during MD simulations, favorable ADME properties, and strong 
binding-free energy values suggest that Sphenostylisin I and DMDBC 
could behave as effectively as Piragliatin in enhancing glucokinase activity. 
However, they may present a lower risk of adverse effects, particularly 
liver toxicity, due to the absence of the cyclopentanone functional group, 
which was a critical factor in Piragliatin’s failure. The lack of such a 
problematic moiety in Sphenostylisin I and DMDBC indicates a safer 
pharmacological profile, making them promising candidates for further 
investigation as glucokinase activators.

The limited research on Sphenostylisin I and DMDBC presents an 
opportunity for further exploration, as analogous compounds are 
recognized for multiple therapeutic benefits, including antioxidant 

Fig. 12: FEL of the four complexes showing stability differences. Concentrated blue/green indicates higher stability; scattered blue/green 
suggests lower stability with energy barriers (red). (a) Atranorin, (b) Camptothecin, (c) DMDBC, (d) Sphenostylisin I

dcba
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and anti-inflammatory effects [42,43,45,46]. In-depth in vitro and in 
vivo studies are essential to validate these findings before advancing 
to optimization and clinical trials. Additionally, exploring other natural 
product libraries could yield similarly favorable results, aligning with 
the promising outcomes of this study.

In contrast, Camptothecin and Atranorin exhibited lower stability 
across most analyses. Camptothecin’s known toxicity, stemming from 
its DNA-damaging properties, significantly reduces its appeal as a GKA. 
While Atranorin showed potential due to its dual therapeutic action, its 
performance in stability and interaction analyses was less compelling 
compared to Sphenostylisin I and DMDBC, emphasizing the latter pair’s 
superior promise for further development.

CONCLUSION

In this study, the potential of Sphenostylisin I and DMDBC as GKAs was 
thoroughly assessed through molecular docking, molecular dynamics 
simulations, ADME analysis, and binding-free energy calculations. Both 
compounds showed favorable binding affinities and excellent stability 
during MD simulations, along with strong binding free energy values, 
indicating their potential to activate glucokinase effectively. Despite 
slightly higher binding energies compared to the reference compound 
Piragliatin, their lack of liver-toxic functional groups sets them apart as 
promising candidates for drug development. The comparison with other 
compounds, including Camptothecin and Atranorin, further highlighted 
the unique stability and favorable properties of Sphenostylisin I and 
DMDBC, making them suitable alternatives to Piragliatin. Even though 
an extensive research was undertaken, in silico methods were relied on, 
presenting a limitation of the study.

Future research should focus on in vitro and in vivo testing of 
Sphenostylisin I and DMDBC to validate their glucokinase activation 
potential and assess their safety profile in biological systems. This 
should include exploring the metabolic pathways and toxicity of 
these compounds to ensure their suitability as long-term treatments 
for conditions like type 2 diabetes, while also considering potential 
interactions with other drugs. Further optimization of these compounds, 
combining in silico and lab assay, could also be considered to enhance 
their bioavailability and pharmacokinetic properties.

ACKNOWLEDGMENT

The authors acknowledge the Faculty of Pharmacy, Universitas 
Indonesia, for providing resources and the National Research and 
Innovation Agency of Indonesia (BRIN) for facilitating access to their 
computational services through the BRIN MAHAMERU HPC.

FUNDING

This research was supported by Universitas Indonesia through the 
PUTI grant No. NKB 602/UN2.RST/HKP.05.00/2024.

AUTHORS CONTRIBUTIONS

Ezekiel Makambwa contributed to the hypothesis formulation, 
conceptualization, data compilation, processing, analysis, and 
writing of the original and review drafts. Masteria Yunovilsa Putra 
provided supervision. Adha Dastu Illahi contributed to the molecular 
dynamic study and draft review. Muhammad Adil Khan assisted with 
hypothesis formulation and draft review. Arry Yanuar contributed to 
conceptualization and supervision.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

1. Onikanni SA, Lawal B, Munyembaraga V, Bakare OS, Taher M, Khotib J, 
et al. Profiling the antidiabetic potential of compounds identified 
from fractionated extracts of Entada africana toward glucokinase 

stimulation: Computational insight. Molecules. 2023;28(15):5752. 
doi: 10.3390/molecules28155752, PMID: 37570723

2. Dahlén AD, Dashi G, Maslov I, Attwood MM, Jonsson J, Trukhan V, 
et al. Trends in antidiabetic drug discovery: FDA approved drugs, 
new drugs in clinical trials and global sales. Front Pharmacol. 
2022;12:807548. doi: 10.3389/fphar.2021.807548, PMID: 35126141

3. Usai R, Majoni S, Rwere F. Natural products for the treatment and 
management of diabetes mellitus in Zimbabwe-a review. Front 
Pharmacol. 2022;13:980819. doi: 10.3389/fphar.2022.980819, 
PMID: 36091798

4. Mutowo M, Gowda U, Mangwiro JC, Lorgelly P, Owen A, Renzaho A. 
Prevalence of diabetes in Zimbabwe: A systematic review with meta-
analysis. Int J Public Health. 2015;60(1):1-11. doi: 10.1007/s00038-
014-0626-y, PMID: 25432797

5. Edelman SV, Polonsky WH. Type 2 diabetes in the real 
world: The elusive nature of glycemic control. Diabetes Care. 
2017;40(11):1425-32. doi: 10.2337/dc16-1974, PMID: 28801473

6. Louie JZ, Shiffman D, Rowland CM, Kenyon NS, Bernal-Mizrachi E, 
McPhaul MJ, et al. Predictors of lack of glycemic control in persons with 
type 2 diabetes. Clin Diabetes Endocrinol. 2024;10(1):2. doi: 10.1186/
s40842-023-00160-7, PMID: 38267992

7.	 Thilagavathi	 R,	 Hosseini‐Zare	 MS,	 Malini	 M,	 Selvam	 C.	
A comprehensive review on glucokinase activators: Promising 
agents for the treatment of type 2 diabetes. Chem Biol Drug Des. 
2022;99(2):247-63. doi: 10.1111/cbdd.13979, PMID: 34714587

8. Ren Y, Li L, Wan L, Huang Y, Cao S. Glucokinase as an emerging 
anti-diabetes target and recent progress in the development of 
its agonists. J Enzyme Inhib Med Chem. 2022;37(1):606-15. 
doi: 10.1080/14756366.2021.2025362, PMID: 35067153

9. Sharma P, Singh S, Sharma N, Singla D, Guarve K, Grewal AS. 
Targeting human Glucokinase for the treatment of type 2 diabetes: 
An overview of allosteric Glucokinase activators. J Diabetes Metab 
Disord. 2022;21(1):1129-37. doi: 10.1007/s40200-022-01019-x, 
PMID: 35673438

10. Taha MO, Habash M, Khanfar MA. The use of docking-based 
comparative intermolecular contacts analysis to identify optimal 
docking conditions within glucokinase and to discover of new GK 
activators. J Comput Aided Mol Des. 2014;28(5):509-47. doi: 10.1007/
s10822-014-9740-4, PMID: 24610240

11. Li P, Zhu D. Clinical investigation of glucokinase activators for 
the restoration of glucose homeostasis in diabetes. J Diabetes. 
2024;16(5):e13544. doi: 10.1111/1753-0407.13544, PMID: 38664885

12. Yadav S, Bharti S, Mathur P. GlucoKinaseDB: A comprehensive, 
curated resource of glucokinase modulators for clinical and molecular 
research. Comput Biol Chem. 2023;103:107818. doi: 10.1016/j.
compbiolchem.2023.107818, PMID: 36680885

13. Sharma S, Wadhwa K, Choudhary M, Budhwar V. 
Ethnopharmacological perspectives of Glucokinase activators in the 
treatment of diabetes mellitus. Nat Prod Res. 2022;36(11):2962-76. 
doi: 10.1080/14786419.2021.1931187, PMID: 34044681

14. Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, 
et al. PLIP 2021: Expanding the scope of the protein-ligand interaction 
profiler to DNA and RNA. Nucleic Acids Res. 2021;49(W1):W530-4. 
doi: 10.1093/nar/gkab294, PMID: 33950214

15. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, 
Meng EC, et al. UCSF Chimera--A visualization system for exploratory 
research and analysis. J Comput Chem. 2004;25(13):1605-12. 
doi: 10.1002/jcc.20084, PMID: 15264254

16. Petit P, Antoine M, Ferry G, Boutin JA, Lagarde A, Gluais L, et al. The 
active conformation of human Glucokinase is not altered by allosteric 
activators. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 11):929-35. 
doi: 10.1107/s0907444911036729, PMID: 22101819

17. Krivák R, Hoksza D. P2Rank: Machine learning based tool for rapid 
and accurate prediction of ligand binding sites from protein structure. 
J Cheminform. 2018;10(1):39. doi: 10.1186/s13321-018-0285-8

18. Ali A. Development of antidiabetic drugs from benzamide derivatives 
as Glucokinase activator: A computational approach. Saudi J 
Biol Sci. 2022;29(5):3313-25. doi: 10.1016/j.sjbs.2022.01.058, 
PMID: 35844378

19. Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. 
Computational protein-ligand docking and virtual drug screening with 
the AutoDock suite. Nat Protoc. 2016;11(5):905-19. doi: 10.1038/
nprot.2016.051, PMID: 27077332

20. Hill AD, Reilly PJ. Scoring functions for AutoDock. Methods Mol 
Biol. 2015;1273:467-74. doi: 10.1007/978-1-4939-2343-4_27, 
PMID: 25753725

21. Morris GM, Lim-Wilby M. Molecular docking. Methods Mol 



67

Asian J Pharm Clin Res, Vol 18, Issue 1, 2025, 56-67
 Makambwa et al.

Biol. 2008;443:365-82. doi: 10.1007/978-1-59745-177-2_19, 
PMID: 18446297

22. Kurian T. Molecular docking study of Epigallocatechin gallate on FLT3 
in complex with gilteritinib for anticancer activity. Asian J Pharm Clin 
Res. 2024;7(1):5-7. doi: 10.22159/ajpcr.2024.v17i1.48733

23. Bell EW, Zhang Y. DockRMSD: An open-source tool for atom mapping and 
RMSD calculation of symmetric molecules through graph isomorphism. 
J Cheminform. 2019;11(1):40. doi: 10.1186/s13321-019-0362-7

24. Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate 
pharmacokinetics, drug-likeness and medicinal chemistry friendliness 
of small molecules. Sci Rep. 2017;7(1):42717. doi: 10.1038/srep42717, 
PMID: 28256516

25. Michiba K, Watanabe K, Imaoka T, Nakai D. Recent advances in 
the gastrointestinal complex in vitro Model for ADME studies. 
Pharmaceutics. 2023;16(1):37. doi: 10.3390/pharmaceutics16010037, 
PMID: 38258048

26.	 Mora	 Lagares	 L,	 Minovski	 N,	 Novič	 M.	 Multiclass	 classifier	 for	
P-glycoprotein substrates, inhibitors, and non-active compounds. 
Molecules. 2019;24(10):2006. doi: 10.3390/molecules24102006, 
PMID: 31130601

27. Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and 
induction of CYP enzymes in humans: An update. Arch Toxicol. 
2020;94(11):3671-722. doi: 10.1007/s00204-020-02936-7, 
PMID: 33111191

28. Pinal R. Enhancing the bioavailability of poorly soluble drugs. 
Pharmaceutics. 2024;16(6):758. doi: 10.3390/pharmaceutics16060758, 
PMID: 38931880

29. Tsopelas F, Giaginis C, Tsantili-Kakoulidou A. Lipophilicity and 
biomimetic properties to support drug discovery. Expert Opin Drug 
Discov. 2017;12(9):885-96. doi: 10.1080/17460441.2017.1344210, 
PMID: 28644732

30. Lemkul JA. Introductory tutorials for simulating protein dynamics with 
GROMACS. J Phys Chem B. 2024;128(39):9418-35. doi: 10.1021/acs.
jpcb.4c04901, PMID: 39305267

31.	 Jo	S,	Kim	T,	Iyer	VG,	Im	W.	CHARMM‐GUI:	A	web‐based	graphical 
user interface for CHARMM. J Comput Chem. 2008;29(11):1859-65. 
doi: 10.1002/jcc.20945, PMID: 18351591

32. Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, 
et al. CHARMM-GUI input generator for NAMD, GROMACS, 
AMBER, OpenMM, and CHARMM/OpenMM simulations using 
the CHARMM36 additive force field. J Chem Theory Comput. 
2016;12(1):405-13. doi: 10.1021/acs.jctc.5b00935

33. Miller BR 3rd, McGee TD, Swails JM, Homeyer N, Gohlke H, 
Roitberg AE. MMPBSA.py: An efficient program for end-state free 
energy calculations. J Chem Theory Comput. 2012;8(9):3314-21. 
doi: 10.1021/ct300418h, PMID: 26605738

34. Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. 
gmx_MMPBSA: A new tool to perform end-state free energy calculations 
with GROMACS. J Chem Theory Comput. 2021;17(10):6281-91. 
doi: 10.1021/acs.jctc.1c00645, PMID: 34586825

35. Khamlich J, Douiyeh I, Saih A, Moussamih S, Regragui A, Kettani A, 
et al. Identification of small molecule Glucokinase activators for the 
treatment of diabetes based on plants from the traditional Chinese 
medicine: In silico analysis. Microb Pathog. 2024;195:106851. 
doi: 10.1016/j.micpath.2024.106851, PMID: 39197693

36. Min Q, Cai X, Sun W, Gao F, Li Z, Zhang Q, et al. Identification of 
mangiferin as a potential Glucokinase activator by structure-based 
virtual ligand screening. Sci Rep. 2017;7(1):44681. doi: 10.1038/

srep44681, PMID: 28317897
37. Zhi J, Zhai S. Effects of piragliatin, a Glucokinase activator, on fasting 

and postprandial plasma glucose in patients with type 2 diabetes 
mellitus. J Clin Pharmacol. 2016;56(2):231-8. doi: 10.1002/jcph.589, 
PMID: 26183686

38. Anderson A. Final Report on the safety assessment of benzaldehyde. Int 
J Toxicol. 2006;25(Suppl 1):11-27. doi: 10.1080/10915810600716612, 
PMID: 16835129

39. Melo MG, dos Santos JP, Serafini MR, Caregnato FF, de Bittencourt 
Pasquali MA, Rabelo TK, et al. Redox properties and cytoprotective 
actions of atranorin, a lichen secondary metabolite. Toxicol In Vitro. 
2011;25(2):462-8. doi: 10.1016/j.tiv.2010.11.014, PMID: 21111802

40. Kamle M, Pandhi S, Mishra S, Barua S, Kurian A, Mahato DK, et al. 
Camptothecin and its derivatives: Advancements, mechanisms and 
clinical potential in cancer therapy. Med Oncol. 2024;41(11):263. 
doi: 10.1007/s12032-024-02527-x, PMID: 39382779

41. Hegab MI. A review on chemical and biological studies of 4-chromanone 
derivatives. Russ J Organ Chem. 2023;59(3):483-97. doi: 10.1134/
S107042802303017X

42. Park JE, Han JS. HM-chromanone suppresses hepatic glucose production 
via activation of AMP-activated protein kinase in HepG2 cell. Eur J 
Pharmacol. 2022;928:175108. doi: 10.1016/j.ejphar.2022.175108, 
PMID: 35718128

43. Cheng JL, He XR, Wang ZC, Zhang JG, Zhao JH, Zhu GN. 
Metabolism-based synthesis, biological evaluation and structure-
activity relationship analysis of spirotetramat analogues as potential 
lipid biosynthesis inhibitors. Pest Manag Sci. 2013;69(10):1121-30. 
doi: 10.1002/ps.3473, PMID: 23436572

44. Li J, Pan L, Deng Y, Muñoz-Acuña U, Yuan C, Lai H, et al. 
Sphenostylisins A-K: Bioactive modified isoflavonoid constituents 
of the root bark of Sphenostylis marginata ssp. Erecta. J Org Chem. 
2013;78(20):10166-77. doi: 10.1021/jo401573h

45. Li X, Wang D, Xia MY, Wang ZH, Wang WN, Cui Z. Cytotoxic 
prenylated flavonoids from the stem bark of Maackia amurensis. Chem 
Pharm Bull (Tokyo). 2009;57(3):302-6. doi: 10.1248/cpb.57.302, 
PMID: 19252325

46. Nahir CF, Putra MY, Wibowo JT, Lee VS, Yanuar A. The potential of 
Indonesian marine natural product with dual targeting activity through 
SARS-COV-2 3CLPRO and PLPRO: An in silico studies. Int J Appl 
Pharm. 2023;15(5):171-80. doi: 10.22159/ijap.2023v15i5.48416

47. Damghani T, Sedghamiz T, Sharifi S, Pirhadi S. Critical c-Met-inhibitor 
interactions resolved from molecular dynamics simulations of different 
c-Met complexes. J Mol Struct. 2020;1203:127456. doi: 10.1016/j.
molstruc.2019.127456

48. Lobanov MY, Bogatyreva NS, Galzitskaya OV. Radius of gyration as an 
indicator of protein structure compactness. Mol Biol. 2008;42(4):623-8. 
doi: 10.1134/S0026893308040195

49. Al-Khafaji K, Taskin Tok T. Molecular dynamics simulation, free 
energy landscape and binding free energy computations in exploration 
the anti-invasive activity of amygdalin against metastasis. Comput 
Methods Programs Biomed. 2020;195:105660. doi: 10.1016/j.
cmpb.2020.105660, PMID: 32726718

50. Wang C, Greene D, Xiao L, Qi R, Luo R. Recent developments and 
applications of the MMPBSA method. Front Mol Biosci. 2018;4:87. 
doi: 10.3389/fmolb.2017.00087, PMID: 29367919

51. Sahakyan H. Improving virtual screening results with MM/GBSA and 
MM/PBSA rescoring. J Comput Aided Mol Des. 2021;35(6):731-6. 
doi: 10.1007/s10822-021-00389-3, PMID: 33983518


