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ABSTRACT

Hepatocellular carcinoma (HCC) represents a significant threat to global health and is responsible for significant mortality rates worldwide. 
Conventional treatment options such as surgery and chemotherapy have inherent limitations. To remedy these deficits, the development of novel 
therapeutic strategies is essential. Nanomedicines have shown promise in HCC treatment as they offer improved stability, controlled release, and 
increased drug loading capacity. This review explores the application of nanoconstructs in HCC treatment, including active and passive targeting 
strategies. In addition, liver cell targeting approaches, targeting moieties, and conjugation chemistry for surface functionalization are investigated. 
A compact overview of various therapeutic approaches to HCC treatment is also given.

Keywords: Hepatocellular carcinoma, Nanomedicine, Targeted drug delivery, Therapeutic nanoparticles, Liver cancer treatment, Diagnostic 
biosensors.

INTRODUCTION

An estimated one million new cases of liver cancer are diagnosed each 
year, making it one of the leading causes of death worldwide. This 
problem is exacerbated by the lack of effective pharmacotherapies. Each 
year, approximately 800,000 people worldwide are diagnosed with 
liver cancer, and the mortality rate is over 90% [1,2]. Hepatocellular 
carcinoma (HCC), hepatic angiosarcoma, cholangiocarcinoma, and 
hepatoblastoma are among the subtypes of liver cancer, with HCC being 
the most common [2-5]. Effective drug delivery is hampered by the 
pathophysiology of HCC, which impairs normal liver function [2]. Poor 
prognosis, inadequate drug delivery, severe side effects, and lifelong 
immunosuppressive therapy after transplantation are the limitations 
of traditional HCC therapies such as chemotherapy, surgical resection, 
and radiotherapy [2,6,7]. Therefore, it is crucial to develop new and 
alternative approaches to the treatment of HCC.

With many advantages, such as increased drug stability, better 
absorption, especially in liver cells, reduced renal excretion, and 
reduced toxicity, the use of nanomedicines has revolutionized the 
treatment of liver cancer [2,3]. However, these nanomedicines have 
disadvantages, such as B. poor drug absorption due to aberrant tumor 
architecture that prevents the enhanced permeability and retention 
effect (EPR) [8-11]. Researchers have used targeting agents to alter the 
surface of nanoparticles (NPs) to overcome these limitations and make 
it easier to deliver the active moiety to the intended site of action [8]. 
Both active and passive targeting techniques can be used to specifically 
treat the liver. For nanocarriers to accumulate and remain in their 
intended location, passive targeting requires changing their surface 
area, size, and tissue properties. Conversely, active targeting identifies 
receptors on the surface of target cells through the conjugation of 
ligands to the nanocarrier surface [12,13]. Numerous receptors, such 
as mannose receptors, TfR, asialoglycoprotein (ASGP-R) receptors [14], 
and folate receptors (FR) [11,15-17], are expressed by the liver. ASGPR 
ligands are currently being evaluated in a number of Phase I clinical 
trials to target HCC. A review of the various targeting receptors in the 

liver, therapeutic approaches for liver cancer, targeting strategies, the 
role of passive and active targeting, and NPs used in HCC treatment are 
all intended to be included in this review [18-21].

PATHOPHYSIOLOGY OF LIVER DISEASE

The liver is essential for many physiological functions such as energy 
storage, detoxification, and biochemical synthesis. However, HCC can 
disrupt these processes. HCC has a multifactorial etiology (Fig. 1), 
which includes exposure to aflatoxin B1, alcoholism, obesity, viral 
hepatitis, and genetic mutations such as alterations in the PI3K-mTOR 
and HER-EGFR signaling pathways. Insulin resistance, liver cirrhosis, 
and ultimately HCC are caused by the NFκB signaling pathway and 
inflammatory cytokines such as Interleukin 6, Interleukin 12 (IL-
12), and tumor necrosis factor-alpha (TNFα), which are triggered by 
hepatitis C virus infection. Severe inflammation, activation of TNFα 
and IL signaling pathways, and oxidative stress-induced liver cell death 
are features of alcohol-induced HCC. In patients with non-alcoholic 
fatty liver disease, lipid accumulation leads to insulin resistance, 
inflammatory macrophage activation, and alterations in signaling 
pathways such as PI3K-AKT-mTOR and β-catenin/WNT. Other factors 
such as obesity, lifestyle, and genetic mutations can also contribute to 
the development of HCC. Complex epigenetic changes and mutations 
associated with HCC trigger molecular signaling pathways that promote 
cell proliferation and avoidance of apoptosis. In addition, fibrosis-
related sinusoidal fenestrations and decreased hepatic artery perfusion 
are two ways in which HCC alters hepatic perfusion. These changes 
result in endothelial, extracellular matrix, and tumor-stromal barriers 
that hinder drug delivery [2,22].

INTERVENTION USING NANOTECHNOLOGY IN THE MANAGEMENT 
OF HCC

Significant progress has been made in the treatment of cancer 
through the use of nanotechnology. With the increasing demand for 
nanomedicines for HCC, much research has been conducted to address 
the difficulties in targeted drug delivery. To overcome the disadvantages 
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of traditional nanocarriers, various types of nanocarriers have been 
developed over time by modifying their surface properties or structure, 
as explained below.

INORGANIC NPS

With a metal or metal oxide core and monodispersity, inorganic 
NPs exhibit special optical, electrical, and magnetic properties [23]. 
Compared to organic materials, these NPs are extremely stable, 
hydrophilic, non-toxic, and biocompatible [24,25]. They are also easy 
to functionalize. The ability of inorganic NPs to encapsulate a variety 
of drugs is a significant advantage [23]. As potential therapeutic and 
diagnostic agents in oncology, including tumor drug delivery, imaging, 
and radiotherapy, inorganic NPs have attracted great interest in pre-
clinical development [24,26]. Noble metal NPs (gold, silver, platinum), 
metal oxide NPs (iron oxide, zinc oxide, arsenite trioxide, and hafnium 
oxide), and porous NPs (calcium-based, selenium-based, and silica 
NPs) are some types of inorganic nanocarriers [27,28]. Gold NPs 
(AuNPs), one of the noble metals, have attracted great interest in 
biomedical applications due to their remarkable properties, which 
include high surface area to volume ratio, tunable dimensions, 
excellent biocompatibility, controllable biodistribution, and distinct 
optoelectronic properties. Catalytic, antioxidant, and reactive 
properties [29-31]. Due to these properties, AuNPs can be used to 
diagnose and treat liver cancer. Furthermore, AuNPs exhibit high 
surface plasmon resonance (SPR), localized radioactivity, and X-ray 
absorption coefficients [32], which facilitates their conjugation 
with various functionalizing agents such as peptides, therapeutic 
agents, ligands, DNA, and proteins for active targeting [33-35]. Due 
to their antibacterial and anti-inflammatory properties, silver NPs 
(AgNPs) have shown promise in wound and burn dressings [36,37]. 
Interestingly, AgNPs are extremely toxic to microorganisms at very low 
concentrations but exhibit low toxicity to humans [38,39].

Due to their exceptional catalytic activity, electrical properties, 
corrosion resistance, ability to lower intracellular reactive oxygen 
species (ROS) levels, optical properties, localized SPR, and large surface 
area, despite being one of the most expensive noble metals, platinum 
NPs (PtNPs) have shown great promise in nanomedicine [40-43]. 
Medhat et al. proved the anticancer potential of PtNPs by comparing 
their antitumor effects with cisplatin and concluded that PtNPs 
exhibited stronger activity according to apoptosis and antioxidant 
parameters [44]. Metal oxide NPs, particularly iron oxide and zinc 
oxide NPs have been extensively studied for the treatment of HCC. 
In addition, hafnium oxide NPs and arsenite trioxide have shown 
promise in treating liver diseases. Iron oxide NPs are suitable for 
antibacterial, antifungal, and anticancer applications due to their 
unique properties, which include superparamagnetic behavior, 
biodegradability, stability, biocompatibility, low cytotoxicity, and 
abundant polymorphism [45,46]. Due to their high surface-to-volume 
ratio and high surface energies, surface coating is required to stop 
oxidation [47]. Due to their ability to inhibit agglomeration, regulate 
size, and promote certain interactions and tissue barrier penetration, 
iron oxide NPs are superior to other metallic NPs [48]. Due to their 
ease of synthesis, consistent and customizable pore sizes, easy surface 
modification, and high loading capacity, mesoporous silica NPs hold 
promise as therapeutic carriers [49,50].

Porous calcium carbonate NPs are also used due to their affordability, 
accessibility, biocompatibility, low cytotoxicity, pH sensitivity, and 
slow biodegradability [51,52]. These NPs are preferred due to their 
controlled behavior, chemical stability, and ability to encapsulate a 
wide range of molecules, such as proteins, oligonucleotides, dyes, and 
therapeutic agents. Their physical stability is enhanced by their surface 
modification ability and pH-sensitive behavior, making them suitable for 
targeted delivery [53]. Khan and associates. Created cisplatin-oleanolic 
acid-loaded calcium carbonate NPs, which showed a synergistic effect 

Fig. 1: Pictorial representation of etiology of Hepatocellular carcinoma [195]
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on HCC cells, causing apoptosis and reducing hepatotoxicity. Compared 
to free therapeutics, results showed increased HepG2 cell apoptosis and 
pH-dependent therapeutic release [54].

LIPID NPS

Lipid NPs are ionizable, spherical, lipophilic structures that accumulate 
in areas of increased vascular permeability [2] after undergoing cellular 
internalization and endolysosomal bypassing [55]. These nanocarriers 
not only feature minimal cytotoxicity, sustained therapeutic efficacy, 
and controlled pharmacokinetics, but are also versatile in their ability 
to deliver both hydrophilic and lipophilic molecules [56]. Furthermore, 
the surfaces of these lipid nanocarriers can be modified to improve 
the solubilization of therapeutic agents or to avoid immunological 
detection [56]. Liposomes, niosomes, solid lipophilic nanoparticles 
(SLN), lipophilic drug conjugates, lipophilic nanocapsules, 
nanostructured lipophilic carriers (NLC), and other nanoscopic lipid 
vesicles have been created [2,57,58].

Vesicular liposomal structures are small, spherical objects, usually 
between 30 and several micrometers in diameter. They consist of one 
or two lipid bilayers surrounding an aqueous compartment composed 
primarily of natural phospholipid and cholesteric molecules. With 
remarkable properties such as biocomplementarity, biodegradability, 
thermodynamic phase properties, and the ability to encapsulate both 
hydrophilic and lipophilic compounds, thereby preventing degradation 
and facilitating site-specific release, these entities have proven to be a 
promising modality for pharmaceutical delivery [59-61]. Van der Waals 
forces between hydrocarbon chains, hydrogen bonds, and hydrophilic 
interactions between polar headgroups can all alter the surface of these 
liposomal structures [62-64].

Due to their size range, which allows them to diffuse from the porous 
hepatic fenestrations into the extracellular space, these units are 
primarily used for hepatic targeting. Cannito and staff. PEGylated and 
hyaluronated liposomal structures were prepared and showed rapid 
internalization in Huh7 cells overexpressing CD44 [65]. Consisting of 
lipids, solid surfactants, and an appropriate solvent system, solidified 
lipid nanoparticles (SLNs) are spherical, solid, hydrophobic core matrices 
coated with phospholipids and range in size from 50 to 1000 nm [66,67]. By 
limiting drug diffusion into the emulsifier film, minimizing drug mobility 
within the lipid matrix, preventing particle aggregation, and protecting 
drugs from degradation, SLNs are a suitable drug delivery system. They 
also exhibit biocomplementarity, high surface area, high cellular uptake, 
and significant stability during storage [68-70]. Furthermore, they can 
encapsulate both hydrophilic and lipophilic drugs [70,71].

When administered orally, these NPs avoid first-pass metabolism and 
are absorbed by the reticuloendothelial system (RES), allowing surface 
modification of the carrier and potentially serving as a pharmaceutical 
delivery method [68,69]. Tunki and staff created sorafenib-loaded SLNs 
that use pegylated galactose to target ASGPR. By efficiently targeting 
ASGPR, the SLNs showed increased cell uptake, high cytotoxicity, 
and apoptosis in HepG2 cells [72]. Solidified lipid and liquid lipid 
(oil) binary mixtures as hybrid carriers and emulsifiers form 
nanostructured lipid carriers (NLCs), which have an average size of 
200–500 nanometers [73]. By preventing drug leakage during storage, 
which occurs when a less ordered lipid matrix forms, NLCs overcome 
the major disadvantage of SLNs and liposomal structures [74,75].

A controlled drug release profile is achieved through better drug 
loading and accommodation enabled by the formation of an incomplete 
core during solidification [74,76-78]. Varshosaz and associates showed 
that surface-modified NLCs with lactobionic acid (LA) targeting ASGPR 
receptors exhibit increased cellular uptake and cytotoxicity [79].

POLYMERIC NPS

Both synthetic and organic polymeric materials can be used to 
produce polymeric NPs, which can then be formulated as a matrix 

system (nanospherical structures) or as repositories (nanocapsular 
structures) [80]. Covalent binding, adsorptive sequestration, or 
encapsulated retention on the surface of the nanoscale structure 
are three ways in which pharmacological agents can be entrapped 
therein [81]. While nanospherical structures consist of a continuous 
polymer network that holds the pharmacological agent inside or on 
the surface of the nanoscale units, nanocapsular structures consist 
of an oily core containing the pharmacological agent and surrounded 
by a polymer shell [82]. These nanoscale entities can improve the 
bioavailability and therapeutic efficacy of pharmaceutical agents 
while protecting them in the biological environment. They also show 
remarkable stability in biological fluids [80,83]. There are many 
different types of polymeric nanoscale units, such as polyethylene 
glycol (PEG)/poly (lactic-co-glycolic acid) (PLGA) NPs, chitin, chitosan-
based NPs, PLGA NPs, polysaccharide NPs, and PEG NPs [27].

The most preferred macromolecular material is PEG, an inactive 
macromolecule with excellent biocompatibility, amphipathic 
properties, high structural flexibility, the ability to bypass the 
reticuloendothelial apparatus (RES), and high polarity, which 
enhances the hydrophilicity of nanoscale entities (NSEs) and 
facilitates dissolution and penetration [84]. PEGylation of NSE 
contributes to reducing immunogenic potential and toxicity, reducing 
enzymatic degradation, and prolonging metabolic half-life [85,86]. 
Devulapally and associates. Antisense microRNA and gemcitabine 
were co-encapsulated in PLGA-PEG-NSEs for HCC. These NSEs showed 
enhanced cellular internalization and cytotoxic potential [87]. PLGA, a 
copolymer of lactic acid and glycolic acid, is biodegradable because it 
is hydrolytically broken down in the body to produce lactic acid and 
glycolic acid monomers, which the body then metabolizes to reduce 
systemic toxicity [88,89].

Longer residence time in the bloodstream, ability to capture 
hydrophobic and hydrophilic therapeutic agents, superior 
biocompatibility, prolonged release of therapeutic agents, enhanced 
bioavailability, biodegradability, and site-specific action are some of 
the unique properties of PLGA [90]. Gao and staff. Modified PLGA-
NSEs with a CXCR4 antagonist and grafted them using a lipid coating 
to deliver sorafenib to the liver to combat HCC. The results showed that 
sorafenib-loaded PLGA nanocarriers increased survival, delayed tumor 
progression, and improved antiangiogenic efficacy in orthotopic HCC 
model mice [91].

Due to its flexibility in linear chain configuration, chitosan possesses 
mucoadhesive properties that promote increased absorption 
efficiency [92]. Faris and staff designed simvastatin-chitosan 
nanocarriers (CH-NCs) for targeted delivery of HCC through ASGPR. 
Compared to pure simvastatin suspension, the nanocarriers showed 
improved bioavailability (2X), increased uptake through ASGPR-
mediated endocytosis, and increased proliferative activity in 
HepG2 cells [93]. As a biodegradable proteomic entity, albumin has 
site-specific pharmaceutical delivery capabilities and is non-toxic, non-
immunogenic, biocompatible, economical, and low in cytotoxicity [94]. 
Monodispersity, predictable placement of cross-linking groups, and 
programmable degradation kinetics are some of the advantages of 
albumin nanocarriers in drug delivery [95,96].

The natural ability of proteins to attack cancer cells can be enhanced 
by the facile functionalization of albumin nanocarriers with targeting 
moieties [96]. Human serum albumin, ovalbumin, rat serum 
albumin, and bovine serum albumin are among the different forms 
of albumin used to prepare nanocarriers [94,97]. Numerous methods 
can be used to prepare these nanocarriers, including desolvation, 
thermally induced aggregation, self-assembly techniques, and 
emulsification [94,96]. Dayani et al. Developed albumin-lipid 
nanocarriers loaded with LA to specifically deliver sorafenib to 
HCC patients. Cell uptake studies confirmed that these nanocarriers 
showed increased cytotoxicity and cellular uptake in HepG2 cells 
compared to non-targeted nanocarriers [98].
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At a critical micellar concentration, amphipathic molecular building 
blocks spontaneously self-aggregate and form nanoscopic micellar 
constructs, which are colloidal aggregates with a central core 
and a peripheral shell structure. While the peripheral corona is 
hydrophilic (poly(N-vinyl-2-pyrrolidone), PEG, polyethyleneimine, 
and poly(vinyl alcohol)) and the central core is oleophilic (aspartic 
acid, L-lysine, propylene oxide, D, L-lactic acid, spermine, and PLGA), 
this arrangement is reversed in reversed nanoscopic micellar 
constructs [23,99,100]. While hydrophilic pharmacological agents 
are delivered to a specific anatomical site through inverted micellar 
constructs, oleophilic pharmacological agents are delivered into 
systemic circulation through conventional micellar constructs [99]. 
By encapsulating oleophilic pharmacological agents in the central 
core, nanoscopic micelle constructs eliminate the need for the use of 
hazardous organic solvents [99].

Direct dissolution and solvent casting, which include oil-in-water 
emulsion (O/W), cryodesiccation, dialysis, and solution casting, are 
the two methods that can be used to prepare the nanoscopic micellar 
constructs [100,101]. Zhang et al. Created nanoscopic micellar 
constructs loaded with triapine/Ce6 and decorated with lactose for 
the chemophotodynamic treatment of HCC. While the lactose moiety 
makes it easier to attack liver cancer cells, triapine and Ce6 act together 
as promoters of cytotoxic ROS through the Fenton reaction and near-
infrared light (NIR) irradiation, respectively, and increase programmed 
cell death [102].

TARGETING STRATEGIES

By overcoming the challenges presented by traditional NSEs, therapeutic 
nanoscale devices (NSEs) reduce the frequency of administration and 
toxicological effects on other organs. Fig. 2 shows the different targeting 
strategies used to utilize active and passive targeting mechanisms to 
deliver therapeutic agents to the tumor site [8,103]. Passive targeting 
strategies benefit from the pathophysiological features of the tumor 
microenvironment. On the other hand, active targeting uses molecular 
ligands to bind to target cells within the tumor site [8,25,104]. Since ligand-
modified NSE therapies rely on passive hepatic uptake mechanisms before 
ligand-mediated cellular internalization, these two targeting approaches 
are usually used together [3]. The various NSEs used as active targeting 
strategies for drug delivery in HCC are summarized in Table 1.

TARGETING AGENTS

Hepatic stellate cells (HSCs), hepatocytes, endothelial cells, and 
Kupffer cells are among the various hepatic cell populations that the 

externally modified NPs can selectively target with pharmacological 
agents Fig. 3 [124-126]. The various targeting moieties for site-specific 
pharmacological delivery are discussed in detail below.

ANTIBODY (AB) DIRECTED ACTIVE TARGETING

The most widely used and well-known molecular adapters for precise 
targeting of NPs are immunoglobulins (Igs). However, the surface 
immobilization of Igs is limited due to their large molecular size, 
which leads to a significant increase in the diameter of the NPs. Igs 
can be used as targeting molecular adapters due to their known high 
specificity, strong affinity, and versatile target recognition capabilities. 
However, the limited compatibility of these biomolecules with organic 
solvents and their relative susceptibility to environmental stressors 
(ionic potency, thermal energy, and enzymatic catalysis) may present 
technological challenges for the production of repeatable NPs. This 
ultimately affects the stability and shelf life of the formulation as 
well as the cost/efficiency ratio of the preparation. The mercapto 
(cysteine), amino (lysine, asparagine, and glutamine), and carboxylate 
(glutamic and aspartic acid) groups of the Igs can all be bound by the 
NPs. Conversely, conjugated Ig on NPs exhibits uncontrollable spatial 
orientation due to the topological distribution of these amino acids and 
the Igs [127,128].

PROTEIN DIRECTED ACTIVE TARGETING

Polypeptides and other molecular conglomerates are large molecular 
aggregates composed of one or more long sequences of amino acid 
residues with reactive moieties at the carboxyl and amino terminal ends. 
Because polypeptides have a larger molecular mass, they remain in the 
vascular system longer. However, targeting polypeptide receptors is 
limited because too much polypeptide in blood plasma can coexist with 
polypeptides on NPs, potentially representing competition for the same 
receptor. Siderophilin (Sf) and other ferritin-binding glycoproteins 
are widely used for targeting due to their affinity for the Siderophilin 
receptor (SfR), which is overexpressed in many neoplastic cell types. 
Through receptor-mediated endocytosis in which SfR is overexpressed, 
Sf can be rapidly internalized into cells and contains two homologous 
domains for iron (III) binding [127-130].

APTAMER DIRECTED ACTIVE TARGETING

Single-stranded nucleic acid, ribonucleic acid, or oligonucleotide 
configurations that adopt precise three-dimensional conformations 
are called molecular adapters. Examples of this are oligonucleotide 
ligands [130]. Due to their high reactivity, small molecular size, 

Fig. 2: Pictogram of passive and active targeting strategies in Hepatocellular carcinoma [195]
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biodegradability, and low immunoreactivity properties, oligonucleotide 
ligands are suitable molecular entities for precise targeting [129]. 
Nucleic acid sequences, inorganic molecular entities, polypeptides, 
peptide sequences, intact cellular structures, antibacterial agents, 
carbohydrate molecules, small organic molecular entities, and even 
microorganisms are among the many molecular targets with which 
they form high-affinity molecular complexes. Hydrophilic, electrostatic, 
and complementary spatial recognition enables the intermolecular 
interactions between oligonucleotide ligands and antigenic molecular 
entities. Furthermore, the binding affinity between oligonucleotide 
ligand-modified NPs and their molecular targets is increased by 
the multivalent molecular effect. However, oligonucleotide ligands 
have certain disadvantages, such as reduced binding affinity caused 
by hydrophobic and negatively charged antigenic molecules and 
degradation of modified NPs as a result of increased serum nuclease 
activity in the blood.

Since oligonucleotide ligands and antigenic molecular entities differ 
in their hydrophobicity-hydrophilicity properties, which can inhibit 
hydrogen bond formation and promote hydrophobic molecular 
interactions, the negatively charged phosphodiester backbone and 
hydrophilic molecular nature of oligonucleotide ligands can also hinder 
intermolecular binding [127,128].

PEPTIDE DIRECTED ACTIVE TARGETING

Sequences with fewer than 50 amino acid residues distinguish 
molecular fragments, such as oligopeptide sequences, from polymeric 
molecular chains. The small molecular size and straightforward 
three-dimensional topology of oligopeptide sequences improve their 
molecular stability and robustness to environmental influences, 
thereby facilitating chemical synthesis and bioconjugation. The binding 
affinity of oligopeptide sequences to antigenic molecular units can be 
increased through their multivalent molecular action. The arginine-
glycine-aspartate (RGD) tripeptide sequence and its derivatives are 
widely used as molecular targeting agents because of their ability to 
form high-affinity molecular complexes with integrin receptors in solid 
neoplastic lesions. Due to their small size, oligopeptide sequences 
offer many advantages, such as improved molecular stability, lower 
production costs, and easy bioconjugation at high molecular densities. 
The advantages of RGD oligopeptide sequences include control over 
ligand presentation, low risk of immunoreactivity, and simple and 
inexpensive chemical synthesis [127-130].

SMALL MOLECULES DIRECTED ACTIVE TARGETING

Pteroylglutamic acid, sometimes called folinic acid or vitamin B9, is 
the most commonly used of these small molecules. Pteroylglutamic 
acid is a stable, non-immunoreactive, and commercially viable 
molecule and promotes rapid internalization into cancerous cell 
structures. Numerous advantages, such as easy bioconjugation and 
high specificity and affinity for FR overexpressed in neoplastic cell 
aggregates, are responsible for its widespread use. However, the 
main disadvantage of pteroylglutamic acid is that FR is also present 
in healthy tissue and normal epithelial cell structures of various 
organs, which complicates the selectivity of the ligand for diseased cell 
structures. Triphenylphosphine oxide and its derivatives are another 
small molecules commonly used to target mitochondrial structures. 
This comparatively large, cationic, and lipophilic molecule can quickly 
cross cell membranes and accumulate significantly in mitochondrial 
structures. Since lectin proteins recognize glycan moieties such as 
glucopyranose, manopyranose, galactopyranose, and their derivatives, 
they are mainly used as targeting ligands [127-130].

METHODS FOR ATTACHING TARGETING LIGANDS

Both molecular binding and intermolecular association techniques 
can be used to immobilize molecular adapters on the surface of NPs. 
The molecular binding method involves exposing organic molecular 
solvents to covalently immobilize NPs containing polypeptide 
sequences, small molecules, or oligonucleotide aptamers in a single 
step. The intermolecular association approach, on the other hand, is 
a relatively simple technique for attaching molecular adapters during 
NPs preparation; nevertheless, this often leads to low immobilization 
efficiency of the molecular adapter, frequent NPs aggregation, and 
difficulties in measuring and managing the immobilized molecular 
adapter. Furthermore, the correct spatial orientation of the immobilized 
molecular adapter is not guaranteed, which increases the risk of 
detachment of the molecular adapter [128].

COVALENT BONDING STRATEGIES

Numerous bioconjugation techniques can be used to immobilize 
molecular adapters on the surface of nanoscale particles (NSPs). 
These include thiol-mediated conjugation, which involves the covalent 
coupling of polymers with thiol groups on the ligand or maleimide 
groups on NSP surfaces, leading to the formation of a stable thioether 
bond; formation of a Schiff base, which is a nucleophilic addition reaction 
of aldehyde groups with primary amine units, leading to the formation 

Fig. 3: List of various cells and receptors present in the liver [195]
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of an imine bond; and carbodiimide-facilitated conjugation, which 
involves the synergistic interaction of carboxylic acid moieties with 
primary amine groups, resulting in the formation of a stable peptide 
bond. Furthermore, bioorthogonal conjugation techniques such as click 
chemistry provide a flexible way to immobilize molecular adapters on 
NSPs by forming heteroatom bonds in a single step. There are different 
types of click chemistry reactions, such as cycloaddition, nucleophilic 
substitution, and carbonyl chemistry, and they often require a catalyst 
such as copper(I) ions to accelerate the reaction between the azide and 
alkyne functional groups [127,128,131,132].

NON-COVALENT BONDING STRATEGIES

The tetrameric glycoprotein moiety avidin has four binding domains for 
biotin molecular moieties, facilitating pairing with biotinylated molecular 
adapters. This makes the avidin-biotin complex unique due to its remarkably 
strong non-covalent molecular interaction. A common bioconjugation 
method for connecting molecular adapters to nanoscale particle surfaces 
(NSPs) is physical adsorption. By simply adding the molecular adapter to 
the NSP solution, Igs-bound phospholipid-based NSPs can be generated. 
The adsorption of Igs to NSPs is regulated by hydrophobic molecular 
interactions and ionic charges; 4–40% of immunoglobulin G (IgG) binds to 
liposomal NSPs, and this percentage increases to approximately 50% for 
anionic phospholipid molecular entities. Compared to free Igs, Igs -bound 
NSPs show 30–50% higher antigen binding affinity. However, the 
therapeutic efficacy of Igs-NSP conjugates may be compromised if opsonins 
with a higher binding affinity displace adsorbed Igs in the bloodstream. 
Furthermore, this bioconjugation approach is unsuitable for therapeutic 
applications in humans because exogenous protein-containing molecular 
entities on the surface of NSPs can trigger immunogenic reactions [127,128].

IN VITRO AND IN VIVO LIVER CANCER MODELS FOR EVALUATION 
OF NANOMEDICINES

Significant progress has been made in understanding the underlying 
molecular, biological, genetic, and epigenetic mechanisms, pathogenic 
processes, and novel therapeutic approaches of HCC. To illustrate 
the complexity of this complicated process, pre-clinical experimental 
models are used, which are briefly explained below.

IN VITRO HCC MODELS

Studies conducted in controlled laboratory environments, in 
which isolated cell populations are cultured in carefully prepared, 

nutrient-rich media, have provided invaluable insights. Proliferative 
capabilities, invasive capabilities, biochemical processes, intracellular 
communication pathways, therapeutic recalcitrance, responsiveness to 
pharmacological or radiological interventions, as well as the molecular 
basis of oncogenesis and metastatic dissemination are all crucially 
revealed by neoplastic cell lines that are widely used in routine scientific 
research. Most genetic and epigenetic changes typical of malignant 
lesions are accurately reproduced by these cell lines. Therefore, they 
are essential research tools for the screening of pharmacological 
agents, the identification of molecular targets, and the development of 
in vivo xenograft models that enable rapid and economical evaluation 
of potential treatment approaches. Approximately thirty cell lines 
have been examined as part of research into HCC. In particular, the cell 
lines HepG2, HepaRG, Hep3B, C3A, and HuH-7 are often used. With an 
estimated IC50 value of 3.31 µM, the Hep3B cell line showed the most 
striking sensitivity to sorafenib among them. Due to its wide availability 
and well-characterized properties that facilitate toxicological and 
pharmacological studies, the HepG2 cell line is widely used in HCC 
research [133,134].

IN VIVO HCC MODELS

Important information about human neoplastic biology, disease 
pathophysiology and causative factors, and genetic abnormalities 
that lead to the development and spread of malignant tumors can be 
obtained from organismal models. Due to the complexity of causative 
factors and tumor heterogeneity, establishing a high-precision 
animal experimental paradigm for HCC is a difficult task. To facilitate 
the evaluation of potential pharmacological interventions in pre-
clinical studies and support the development of targeted therapeutic 
modalities, an ideal model must closely mimic the pathophysiological 
and biochemical features of actual HCC, including its chronological 
progression.

MOUSE MODELS

Fig. 4 delineates the diverse methodologies employed to induce HCC in 
murine models.

The chemically induced HCC mouse model (CIM) mimics the 
immunological, genetic, and environmental factors that lead to the 
development of cancer in humans. This causes serious damage due 
to the detoxification of xenobiotic substances, which leads to certain 
carcinogenic substances causing liver damage. Classification is based 

Fig. 4: Schematic representation of Hepatocellular carcinoma induction methods in mouse models [195]
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on the type of carcinogen used. Because the genetic, histological, and 
molecular variations typical of human cancers are preserved, the 
xenograft HCC model involves the transplantation of human cancer 
cell lines or biopsy materials into the liver tissue or subcutaneous area 
of immunocompromised mice. By simulating tumors in a natural, non-
immunocompromised environment and reproducing human histological, 
pathological, and molecular heterogeneity, genetically engineered HCC 
mouse models facilitate the interpretation of tumorigenesis mechanisms, 
progression, therapeutic response, and innate drug resistance. 
Using a variety of techniques, such as intravenous transplantation of 
human peripheral blood mononuclear cells and inoculation of CD34+ 
hematopoietic stem cells (HSCs), the humanized HCCMouse model (HMs) 
involves the transplantation of patient-derived xenografts or human 
tumor cells in immunocompromised patient mice that have components 
of the human immune system, recreate interactions between tumor and 
immune system and the development of cancer, and restoration of the 
human immune system in vivo [133,135-138].

NON-MOUSE MODEL

The Buffalo rodent, which has been most commonly used in rat HCC 
models, develops neoplasia after exposure to N-2-fluorenylphthalamic 
acid. This leads to the creation of the MCA-RH 7777 cell line by 
intrahepatic injection of syngeneic neoplastic cells, also known as the 
Morris hepatoma paradigm. This paradigm provides a high vaccination 
rate, α-fetoprotein secretion, and therapeutic monitoring. However, 
disadvantages include the absence of buffalo rodents, aggressive 
metastatic behavior, and differences in imaging and histopathological 
analysis. Another paradigm is the Novikoff hepatoma model developed 
in Sprague-Dawley rodents exposed to 4-dimethylaminoazobenzene. 
Intrahepatic injection of syngeneic neoplastic cells generated the N1-
S1 cell line. By ligation of the common bile duct, these paradigms can 
simultaneously cause liver cirrhosis. However, there are disadvantages, 
such as the possibility of spontaneous regression and non-ideal 
neoplasm induction rates. Wistar rodents have also been used to 
simulate liver cirrhosis, hepatocyte damage, and the evolutionary cycle 
of malignancies occurring in human HCC, liver disease, and neoplasm 
hypervascularity. However, the 3-month induction period required 
for full development of the neoplasm is a major drawback of this 
paradigm [133,139]. The Woodchuck HCC model is widely used to study 
diseases such as HCC that are associated with HBV. Upon exposure to 
WHV, this paradigm naturally develops chronic hepatitis, eventually 
leading to HCC. This model is suitable for exploring intra-arterial 
treatments because HCC develops within 24–32 months. However, 
there are disadvantages, such as B. Handling and breeding problems. 
With advantages such as small size, rapid development, convenient 
pharmacological administration, high genetic and molecular homology 
with humans, high reproduction rate, cheap testing cost, and optical 
transparency, the zebrafish HCC model is becoming increasingly 
popular. Numerous zebrafish paradigms have been created, such as 
those driven by β-catenin, KRAS, Xmrk (EGFR), and Myc [133]. Rapid 
neoplasm growth, easy proliferation, and reliability of neoplasm 
induction are some of the advantages of the rabbit HCC model using 
VX2 neoplasm induction. Thanks to this paradigm, transarterial and 
ablative therapies can be performed. However, variations in neoplasm 
kinetics, peripheral vascularization, unclear neoplasm biology, and 
unclear genome organization are some of the limitations [139].

THERAPEUTIC APPLICATIONS

Chemotherapy
A rapidly developing area for the treatment of HCC is modified 
pharmacotherapy. Fig. 5 gives a detailed overview of the mechanisms 
of action of the pharmacologically active ingredients. Tian and 
associates. Created HKUST-1 metal-organic frameworks (MOFs) based 
on Cu2+ loaded with sorafenib and meloxicam for the treatment of 
HCC. According to the results, MEL/SFB-HKUST-1 MOFs outperformed 
other groups in terms of cell toxicity, dose-dependent cell viability, 
and chemodynamic profile. Ferroptosis and pharmacotherapy are 
both effective nanoplatforms for the treatment of HCC [140]. Janus 
NPs have proven to be promising therapeutics for HCC. LA has a high 
affinity for the ASGP-R found on HCC cells. Zhang et al. Developed LA-
decorated gold nanorods (AuNRs)@zeolitic imidazolate framework 
(ZIF)-based amphiphilic Janus NPs simultaneously loaded with DOX 
and SFB. The results showed significant tumor reduction in HCC cells, 
increased targeting efficiency, and pH-sensitive release of DOX and 
SFB [141].

Wang et al. CH-NCs integrated with engineered naringin (NA) to 
reduce HCC caused by aflatoxin B1. CH-NCs incorporated NA due to its 
limited pharmacological availability. The electrokinetic potential and 
dimensions of NA-CH NCs varied from +31.6±2.3 mV to 54.5±3.6 mV 
and 92.4±4 nm to 188.54±3 nm, respectively. Administration of NA-CH-
NCs and FNRG demonstrated their therapeutic potential against HCC by 
significantly reducing the levels of serum biochemical markers AST and 
ALT in aflatoxin B1-induced HCC [142].

Photothermal therapy (PTT)
The ability of PTT to destroy cancerous tissue while leaving 
healthy tissue intact has attracted attention. To induce localized 
hyperthermia and eradicate tumors, PTT uses a photoreactive agent 
that absorbs radiant energy and converts it into thermal energy, as 
shown in Fig. 6 [143]. Jin and staff. Designed multifunctional NPs to 
study their photothermal activity and demonstrated remarkable 
cellular internalization and targeting ability in Hep3B cells [144]. 
The disadvantages of PTT have been overcome by hybrid therapies. 
Grześkowiak and colleagues. Developed polydopamine NPs for 
targeted chemo-photothermal treatment, which resulted in the 
reduction of tumor growth and reversal of malignancy [145]. Gong 
and staff. Demonstrated pH/NIR dual stimulus sensitivity and 
remarkable cytotoxic effect against liver cancer cells when they grafted 
triformylcholic acid and folic acid onto Fe₃O₄-modified graphene oxide 
for synergistic chemo-PTT [146].

Photodynamic therapy (PDT)
As shown in Fig. 7, photodynamic treatment (PDT) is a minimally 
invasive therapeutic strategy in which a cytotoxic photosensitizer is 
administered and the tumor is then irradiated with a laser [147]. PDT 
has attracted great interest in the treatment of various neoplasms 
because it is non-intrusive [148]. PDT has been effectively used in 
the treatment of cholangiocarcinoma, hepatoblastoma, HCC, and liver 
metastasis. It is considered a viable palliative treatment for advanced 
liver carcinoma [149]. However, a number of problems, such as low 
sensitivity and specificity toward malignant liver tissue and problems 
with laser penetration due to liver density, hinder the clinical use of PDT 

Fig. 5: Illustration of Chemotherapy on the tumor cell [195]
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in the treatment of liver carcinoma [150]. Some of the disadvantages of 
PDT have been addressed by recent developments in photosensitizer 
technology, such as the creation of metal phthalocyanine complexes, gold 
NPs, polymeric micelles, radachlorin, pH-responsive photosensitizers, 
and MOFs [150]. Shao and staff. Prepared amphipathic photocyanin 
analogs and examined their effects on HepG2 cells both in vitro and in 
vivo, both with and without radiation [150]. Zinc(II) phthalocyanine 
(ZnPC) is also used in PDT therapy and Abdel Fadeel et al. To increase 
PDT activity, ZnPc modified with thiophenyl groups was loaded into 
liposomes and transferosomes [151]. Tsuda and staff. Investigated 
how lactosomes loaded with indocyanine green influenced the 
response of the human cell line HuH7 to PDT and NIR treatment of 
HCC [152]. Ke and employees. Developed a photosensitizer and pH-
responsive fluorescent probe based on the self-quenching mechanism 
of phthalocyanine moieties [153]. To overcome the disadvantages 
of pH-dependent photosensitizers, layered double hydroxides with 
anion exchange capabilities and the ability to transport drugs or 
genetic material have been developed [153,154]. Compared to first-
generation photosensitizers, second-generation photosensitizers such 
as radachlorin have better light penetration into target tissues and 
remarkable physical and chemical properties such as low toxicity and 
rapid in vivo metabolism [155].

Sonodynamic therapy
ROS generated by photonic energy have a transient existence that 
limits their diffusion to a depth of 10–55 nm [156], so close proximity 
between the photosensitizer and target cell structures is required to 
induce programmed cell death. Unaffected cell structures, on the other 
hand, suffer no damage. Sonodynamic treatment (SDT) has emerged as 
a promising alternative therapy method to overcome the disadvantages 
of photodynamic treatment (PDT). To enable deep tissue penetration, 
SDT uses ultrasound energy in combination with a sonosensitizing 
agent, as shown in Fig. 8 [157]. Similar to PDT, the mechanism of action 
involves the generation of ROS; other proposed mechanisms include 
thermal decomposition, sonoluminescence, and acoustic cavitation. 
Studies have shown that SDT is effective in causing cellular structures 
of HepG2 liver cancer to undergo programmed cell death. When 
2-deoxyglucose (2-DG), 5-aminolevulinic acid (ALA), and microbubbles 
are combined, enhanced apoptotic properties are observed [157]. Xu 
et al. Excellent cytotoxic effects on the mouse hepatoma H22 cell line 
were found when the efficacy of SDT with pyropheophorbide-a-methyl 
ester (MPPa) on malignant hepatic mitochondrial cell structures was 
investigated for the treatment of liver cancer [157]. Wu and associates. 
Discovered that SDT caused oxidative phosphorylation of mitochondrial 
membranes, decreased mitochondrial membrane potential, and 

Fig. 6: Schematic representation of the effect of photothermal therapy on tumor cells [195]

Fig. 7: Illustration of the mechanism of action of Photodynamic therapy on tumor cells. PS: Photosensitizer material [195]
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significantly reduced the expression of P-glycoprotein and multidrug 
resistance protein (MDR) in HepG2/ADM tumor cell structures [158].

Chemodynamic therapy (CDT)
Cancer cells are more susceptible to ROS-induced cancer 
treatments [159], including photodynamic therapy (PDT), 
sonodynamic therapy (SDT), radiotherapy, and chemotherapy. By 
converting hydrogen peroxide (H2O2) into toxic hydroxyl radicals, 
chemodynamic agents – also called Fenton agents – catalyze Fenton 
or Fenton-like reactions to produce ROS, damaging cellular genetic 
material and ultimately triggering cellular apoptosis. Fig. 9 illustrates 
this mechanism. Because CDT specifically responds to H2O2, has 
tumor cell specificity, has no drug resistance, and does not require 
external stimulation, it provides a more reliable therapeutic approach 
that can be clinically implemented. Inorganic nanocrystals based on 
transition metals [160], nanoenzymes [161], electron-rich hybrid 
nanomaterials [162], MOFs [163], covalent organic frameworks [164], 
and macromolecular nanomaterials [165] are often used to prepare 
CDT agents. Zeng et al. Have developed tumor microenvironment 
(TME)-responsive Fenton nanoreactors consisting of molybdenum 
disulfide (MoS₂) modified with gallic acid (GA) and loaded with iron 
(III) (MoS₂@GA-Fe) [166]. Through a glutathione reaction, the GA-
iron(III) complex converts iron(III) into iron(II), thereby generating 
harmful hydroxyl radicals. In addition, the complex exhibits dual 
imaging ability due to the magnetic resonance property of iron(III) 
and the photoacoustic property of MoS₂. The increased permeability 
and retention effect (EPR) causes the complex to accumulate in HepG2 
cellular units. The Fenton reaction, driven by the reduction of ferric 
iron to ferrous iron, produces a snowball-like effect that is enhanced 
by the addition of GA, which increases oxidative stress. Iron (III) can 
be reduced to iron (II) by molybdenum (IV), creating another Fenton 
reaction cycle. Over time, the reaction is accelerated by the exposure of 
molybdenum (IV) on the MoS₂ surface due to repeated decomposition. 
After degradation, free GA iron(III) is reabsorbed onto the MoS₂ surface, 
producing further harmful hydrogen sulfide and hydroxyl radicals. The 
improved therapeutic efficacy of this nanoreactor is confirmed by in vivo 
photoacoustic/magnetic resonance imaging (MRI) [166]. Combination 
therapy is recommended because although CDT eliminates tumor cell 
units, the tumor itself is still difficult to eliminate. Therefore, treatment 
of liver cancer with a combination of CDT and chemotherapy is the 
preferred choice [167,168]. Cai et al. Developed a novel multifunctional 
NPs for liver cancer chemotherapy/CDT therapy guided by MRI [169].

Immunotherapy in liver cancer
The immune system has proven to be a key player in the fight against 
liver cancer. Adoptive immune cell transfer therapy and checkpoint 
inhibitors are two immunotherapeutic approaches that have shown 
promise in the treatment of liver cancer (Fig. 10) [170]. NPs have 
been investigated by researchers as a potential new therapeutic 
approach. Xu Ligeng et al. studied selenium NPs that reprogrammed 
tumor-associated macrophages and activated natural killer cells 
to combat liver cancer [171]. Cheng et al. Demonstrated antitumor 
effects against free IFN-alpha in liver cancer models by encapsulating 
interferon-alpha 2a in an organometallic NPs [172]. In another study, 
small interfering RNA was delivered through extracellular vesicles, 
slowing the growth of tumors and improving treatment outcomes 
[173]. Liu et al. Created LA-PegPI, a novel copolymer that exhibited 
reduced toxicity and increased stability in liver cells [175]. Guo and 
staff. Developed Nano-FdUMP, a nanoformulation that combines 
Nano-Folox and FdUMP and showed synergistic efficacy in orthotopic 
HCC mouse models [176]. In addition, a study by Zhang et al. Involved 
the formation of chitosan nanocomplexes with doxorubicin and 
recombinant human IL-2, which decreased cell viability and increased 
cellular uptake of doxorubicin [174].

Radiotherapy
Radiation therapy uses high-energy photon radiation to destroy cancer 
cells and is an effective treatment option for liver cancer [179]. This 
method works through two different mechanisms: Direct ionization, 

which fragments DNA immediately, and indirect ionization, which 
generates ROS that cause DNA damage and cellular stress (Fig. 11) 
[177,178]. Radiosensitizers are designed to improve radiation sensitivity 
and specificity, thereby reducing the damage that radiation causes to 
surrounding tissue [180,181]. These substances, which include noble 
metal NPs such as silver and gold, have the ability to interact with cancer 
cells, absorb X-ray energy, and increase the production of ROS, making 
tumor cells more susceptible to radiation [182]. Zeng et al. Investigated 
the potential for radioactivity of nanogold and nanosilver in HepG2 cells 
and showed increased cell death and radiosensitivity [183]. In another 
study, a pH-responsive gold radiosensitizer was developed that showed 
selective accumulation and improved therapeutic efficacy in hepatoma 
cells [184].

BIOSENSORS USED IN THE DIAGNOSIS AND TREATMENT OF HCC

By converting biological signals into electrical impulses, diagnostic 
tools called biosensors have revolutionized the diagnosis of cancer. 
These state-of-the-art tools provide accurate visualization of cancer 
cells, tracking of metastases, and detection of angiogenesis [185]. 
Due to their remarkable sensitivity and accuracy, nanoscale materials 
have become attractive biosensing platforms [186]. Abnormal changes 
in nucleic acid levels that trigger cancer-causing pathways indicate 
HCC. Biosensor technologies can identify biomarkers such as des-γ-
carboxyprothrombin (DCP), glypican-3 (GPC3), and alpha-fetoprotein 
(AFP) [187]. Affordability, compactness, sensitivity, and integrability 
are some advantages of electrochemical techniques. Terahertz 
metamaterial biosensors [188], biosensors based on MOFs [189], Au 

Fig. 9: Schematic representation of the effect of chemodynamic 
therapeutic agents on the cell components [195]

Fig. 8: Pictorial representation of the effect of ultrasound 
irradiation on tumor cells explaining the Sonodynamic therapy 

[195]
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biosensors with SPR [190], biosensors based on organic field effect 
transistors [191], microcantilever biosensors based on aptamers [192], 
and ultrasensitive electrochemiluminescence biosensors for alkaline 
phosphatase detection (ALP). [193] are just some of the biosensors that 
researchers have developed.

When it comes to identifying HCC biomarkers, these biosensors 
have shown remarkable sensitivity, specificity, and accuracy. Future 
developments will concentrate on detecting complicated biological 
samples, creating novel sensing modes for improved repeatability, and 
amplifying signals utilizing novel nanoscale materials [194].

CONCLUSION AND FUTURE PROSPECTIVE

The latest developments in nanoscale pharmaceutical platforms for HCC 
treatment and diagnostic methods are highlighted in this thorough study. 

Extensive research efforts have focused on developing nanoscale drug 
formulations that specifically target cancerous cells for both diagnostic 
and therapeutic purposes to successfully battle HCC. However, because 
the tumor microenvironment might hinder clinical translatability, 
effectively addressing HCC requires a thorough understanding of the 
physiological mechanisms underlying the diseased liver. A synergistic 
combination of particular ligands for matching receptors is necessary 
for the creation of NPs for active targeting of HCC. Because of their 
accessibility and complex characterization, HepG2 cells are often used as 
an in vitro cellular model, which makes toxicological and pharmacological 
studies easier. On the other hand, in vivo, murine models have proven to 
be widely used in clinical research for HCC. For the effective treatment 
of HCC, a variety of therapeutic modalities, including immunotherapy, 
radiation therapy, PTT, photodynamic therapy (PDT), cytotoxic 
chemotherapy, and CDT, can be used either alone or in combination. 

Fig. 10: Pictogram of Hepatocellular carcinoma Immunotherapy [195]

Fig. 11: Schematic representation of the effect of indirect ionizing radiations on cell death [195]
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Due to insufficient testing in animal models, scalability problems, 
and a lack of thorough evaluation standards, few NPs have shown 
comparable results in clinical trials, despite notable advancements in 
NPs demonstrating efficacy in pre-clinical investigations. As a result, 
significant challenges remain in the field of nanomedicine. As a result, 
current efforts should focus on resolving issues at the clinical stage and 
optimizing the manufacturing and scaling-up process.
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