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ABSTRACT

Objectives: Helicobacter pylori is the major cause of duodenal ulcers and gastric cancer. Menaquinone is essential for the respiration and survival of 
H. pylori. Identification of compounds that have good binding affinity at the active site of MqnB will be a  promising approach against H. pylori. This 
study aims to identify the natural lead compounds against MqnB enzymes in H. pylori through in silico methods.

Methods: As the three-dimensional structure of H. pylori MqnB is not available, we have modeled the three-dimensional structure followed by 
identification of the active site. The binding of the compounds from the COlleCtion of Open NatUral producTs database was screened against MqnB, 
and dynamics simulation studies were carried out for the top three lead compounds.

Results: The predicted model of MqnB was subjected to a molecular dynamics (MD) simulation study to obtain the dynamic behavior of MqnB. The 
best representative model was validated, and further used for structure-based virtual screening. Based on the docking results, three lead compounds 
were chosen among the top hits and subjected to 200 ns MD simulation. The results highlight the dynamic nature of MqnB in complex with the lead 
compounds and favorable binding interactions were comparable with the substrate. All the compounds showed promising interactions with MqnB 
during MD simulations.

Conclusion: Identified lead compounds show good binding potential and also maintain interactions with amino acid residues at the active site of 
MqnB enzyme. These compounds could be further explored in the drug discovery process against H. pylori.

Keywords: Futalosine, MqnB, Helicobacter pylori, Natural compounds, Molecular docking, Dynamics simulation.

INTRODUCTION

Menaquinone (MK) and ubiquinone are responsible for bacterial 
respiration [1]. MK biosynthesis happens through two distinct pathways 
in prokaryotes. The traditional MK pathway in certain bacteria employs 
six enzymes expressed as menFDHCEB genes to convert chorismate to 
1,4-dihydroxy-2-naphthoyl-CoA thioesterase. Polyprenyltransferase 
(MenA) and methyltransferase (MenG) enzymes convert 1,4-dihydroxy-
2-naphthoate to MK [2]. However, certain bacteria lack men homologs 
and have established an alternative pathway, the futalosine pathway, 
which has been found in Streptomyces coelicolor, Helicobacter pylori, 
Campylobacter jejuni, and Thermus thermophilus [3]. In this alternative 
route, MqnABCD and unknown Mqn enzyme(s) catalyze the conversion 
of chorismate to MK.

MqnB, an enzyme in the futalosine pathway, also known as futalosine 
hydrolase utilizes futalosine as a substrate and converts it into 
dehypoxanthinyl futalosine and hypoxanthine [4]. MqnB from H. pylori 
contains 180 amino acids and has a molecular weight of 20.02  kDa. 
Futalosine is a nucleoside that was first discovered in 1999 in the 
fermentation broth of Streptomyces. It is a unique nucleoside derivative 
composed of an inosine core with a 3-carboxyphenyl methylene ketone 
group substituting the C-50 hydroxyl group [5]. MqnB has recently 
been found to be an essential enzyme in an alternative MK biosynthesis 
pathway. H. pylori which causes duodenal ulcers and stomach cancer 
requires MK for respiration and survival [6]. Identification of the potential 
lead compounds targeting the enzymes in the futalosine pathway will be 
a promising approach towards  the discovery and development of anti-H. 
pylori drugs. The structure of MqnB has not yet been determined in any 
organism, nor has its function been fully characterized.

In the current study, we have predicted the three-dimensional structural 
models of MqnB followed by structure-based high-throughput virtual 
screening (HTVS) of compounds from a natural compounds database. 
Based on the energy of the docked complexes, hydrogen bonds, and 
hydrophobic interactions at the active site of MqnB, two lead compounds 
were identified. Molecular dynamics (MD) simulation studies were 
carried out to explore the binding potential of the compounds and the 
stability of the active site interactions.

METHODS

Structure prediction and validation
The structure of MqnB was modeled computationally, as the structure 
was not yet determined experimentally. The primary sequence of 
MqnB was retrieved using the gene accession ID: A0A402DZF2 from 
the UniProt database [7]. The structure was then predicted using 
AlphaFold2 ColabFold v1.5.5. AlphaFold2, developed by DeepMind, an  
enhanced version of the original AlphaFold designed for predicting the 
protein structure [8]. It makes use of the MMseqs2 method for swift 
search against large databases to find homologous sequences that are 
related to the template sequence. AlphaFold2 uses a predicted local 
distance difference test (pLDDT) score, template modeling (TM) score, 
and predicted aligned error (PAE) for ranking the five predicted models 
to find the best reliable model. The most reliable predicted structure 
was validated using the Ramachandran plot which was generated using 
the PROCHECK available in SAVES v6.0 [9].

Active site prediction
SiteMap, a tool in the Schrödinger suite, was used to predict the binding 
site of MqnB [10]. It helps in the early stages of drug discovery in 
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offering insights into the druggability of the binding pockets of the 
enzymes. The predicted MqnB model was subjected to Schrödinger’s 
Preparation Wizard which involves processes such as adding hydrogens 
and assigning bond orders. Site points that may be utilized for ligand 
interaction within proteins are produced by the OPLS2005 force field. 
Concave pockets on the protein surface where the ligand can bind are 
examined for its size and shape. Two scoring functions, Sitescore and 
Dscore, are assigned to the potential binding pockets identified by the 
program. Sitescore, which determines the quality of the binding pockets, 
ranges from 0 to 1.2. The score and the potential for a particular site to 
be druggable are directly related to each other. Dscore is more focused 
on the potential of the site to be druggable, helping to prioritize sites 
that are not only of good quality but also likely to be an effective target 
for drug discovery. It gives values that range from 0 to 1.2.

Structure-based virtual screening (SBVS)
Working database
Naturally derived small molecule compounds were downloaded from 
the COCONUT (COlleCtion of Open NatUral producTs) database which 
contains over 400,000 compounds [11]. All the 2D ligand coordinates 
were downloaded in structured data file format and the LigPrep tool 
from the Schrödinger suite was used for minimizing all the ligands using 
the OPLS2005 forcefield. The COCONUT database is an extensively 
used and publicly accessible database for research on natural products 
and drug discovery. LigPrep helped in arriving at well-optimized, 
low-energy, three-dimensional structures for the ligands with correct 
protonation states and chirality.

Virtual screening workflow
To find the potential inhibitors for the enzyme, MqnB, we have 
employed a virtual screening technique using the HTVS module 
from Schrödinger. The HTVS module [10] utilized SBVS techniques, 
incorporating the three-dimensional structure of the MqnB receptor 
and its binding site into the screening process. It helped us to identify 
the hit molecules from the COCONUT database. HTVS workflow starts 
with protein preparation and grid generation using Schrödinger 
followed by Glide-HTVS docking, Glide-standard precision (SP), and 
Glide-extra precision (XP) docking. Glide-HTVS is mainly used for 
the screening of a large dataset within a short time period and 10% 
of the top-scored ligands are taken forward for Glide-SP which aids in 
reducing the false negatives by having a proper balance between speed 
and accuracy. 10% of the top-scored compounds from SP are directed to 
Glide-XP docking which uses a more sophisticated scoring function for 
a comparatively smaller dataset. The compounds which were ranked 
high based on their Glide energy were subjected to induced fit docking 
(IFD) in Schrödinger [12]. IFD incorporates both receptor and ligand 
flexibilities during receptor-ligand docking using both the Glide and 
Prime programs of Schrödinger [13]. Initially, a rigid receptor docking 
was carried out in SP mode with reduced van der Waals radii and an 
increased Coulomb-vdW cutoff. After prime side-chain minimization of 
the receptor and ligand for each pose, the structures within an energy 
limit were subjected to Glide re-docking using XP mode, and each pose 
was ranked based on an IFD scoring function. The best-docked pose 
for the ligands were analyzed based on their Glide energy and ligand 
interactions which were generated using LigPlot+ [14].

MD simulation
To understand the stability of the protein-ligand complexes after IFD, 
they were subjected to MD simulation studies in GROMACS [15,16]. 
Minimization, equilibration of the system, and the production MD run 
were performed in GROMACS using the CHARMM27 force field. The 
ligand parameter files were prepared using the SwissParam online 
tool [17]. A  simple cubic box was generated and the protein was 
centered at 1.0 nm from the edge of the box. The system was solvated 
and neutralized by adding two Na+ ions by replacing the solvent 
molecules using the genion module. The neutralized system was 
energy minimized using the steepest descent method and a maximum 
force of 1000  KJ/moL/nm was used. This was followed by two steps 

of equilibration, NVT, and NPT, with temperature coupling using a 
v-rescale thermostat (300 K), and pressure coupling using a Parrinello-
Rahman barostat, respectively [18]. The system was then subjected to 
a 200 ns MD simulation run and the trajectories formed were analyzed 
using the gmx_rms, root mean square fluctuation (RMSF), gyrate, 
solvent accessible surface area (SASA), and hbond modules for a better 
understanding of the ligand’s binding with the protein at its active site. 
The graphs were generated using xmgrace, and the structures were 
visualized in PyMOL [19].

QikProp analysis for lead compounds
To predict the absorption, distribution, metabolism, excretion, and 
toxicity characteristics of the lead molecules, we employed the QikProp 
module within the Schrödinger suite. It predicted key physicochemical 
descriptors such as molecular weight, polar surface area, and logP and 
properties relevant to pharmacokinetics such as solubility, permeability, 
and potential toxicity. In addition, QikProp provides a comparison range 
for each molecule’s properties against those of 95% of known drugs. 
The identified lead compounds after IFD and MD simulation studies 
were subjected to QikProp analysis to ensure that the compounds have 
the proper pharmacokinetic properties.

RESULTS AND DISCUSSION

Structure prediction
To date, no crystal structure of MqnB has been reported. Therefore, 
to predict the three-dimensional structure, we have used AlphaFold2 
which is an open-source software for protein structure prediction. The 
MqnB sequence was retrieved from UniProt (UniProt ID: A0A402DZF2) 
and the FASTA sequence was submitted to AlphaFold2 for modeling. 
Using the ColabFold module with default parameters, five structural 
models were generated. The per-residue confidence scores were 
assessed using the pLDDT and the PAE matrix (Fig.  1a). Shows the 
PAE matrix, whereas (Fig. 1b) illustrates the pLDDT plot, with regions 
having a high confidence score for structural accuracy.

Among the five models, the one with the highest pLDDT score of 93.9 
and a TM score of 0.90 was selected as the best model. The selected 
model’s structure and its corresponding Ramachandran plot are 
displayed in Fig. 2. The Ramachandran plot analysis shows that 96.3% 
of the residues fall within the most favored regions, 2.4% in additionally 
allowed regions and 1.2% in generously allowed regions, indicating the 
reliability of the predicted structure. We further conducted a 200 ns 
MD simulation, followed by cluster analysis using GROMACS to identify 
the best representative model. This selected model was then used for 
docking studies to evaluate the ligand binding potential at the active site 
of the MqnB enzyme. Fig. 3 shows the best representative model and 
Ramachandran plot. The Ramachandran plot of the best representative 
shows that 81.4% of the residues fall within the most favored regions, 
14% in additionally allowed regions, and 1.8% in generously allowed 
regions.

Binding site prediction
The SiteMap module of the Schrödinger suite was used to predict 
binding sites for the MqnB model. The settings were chosen to 
generate four potential binding sites. Based on the SiteScore, site size, 
and Dscore, the top hit from the four sites was chosen. The chosen 
binding pocket has a SiteScore of 1.035, indicating a high affinity 
for ligand binding. The high Dscore value of 1.032 indicates that the 
binding pocket is highly druggable, meaning that compounds can 
bind at the site with high affinity and selectivity. Table  1 contains a 
detailed list of potential binding pockets. Based on the SiteScore and 
Dscore, site number 1 was chosen as the active site and the amino 
acid residues in the active site are Cys4, Ala5, Gly6, Arg7, Asn8, Glu9, 
Thr10, Leu11, Lys12, Ile17, Phe43, Ile44, Gly45, Ser46, Ala47, Gly48, 
Tyr50, Ser103, Ile106, His107, Glu124, Asn125, Met126, Glu127, 
Ser149, Asn150, Ala152, Gly153, Leu154, Ala156, His157, Phe160, 
His164, Val167, Lys168, Gln169, Leu171, and Glu172. Fig. 4 shows the 
active site residues.
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Fig. 1: AlphaFold2 results for the predicted models of MqnB (a) predicted aligned error matrix plots (b) predicted local distance 
difference test plot

Molecular docking of lead compounds
A total of 406,760 compounds from the COCONUT database were 
docked into the predicted active site of MqnB using a SBVS approach in 
Schrödinger. The docking process followed a stepwise protocol. Initially, 

compounds were docked using HTVS, followed by SP, and finally 
XP docking. Table  2 provides a detailed list of compounds screened 
during virtual screening. After XP docking, the top 20 compounds were 
shortlisted based on their Glide energy and docking scores, which were 

a

b

Fig. 2: (a) Ramachandran plot for the predicted model of MqnB (b) best predicted model from AlphaFold2

a b
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then subjected to IFD. Table 3 presents the two-dimensional structures, 
molecular weights, and International Union of Pure and Applied 
Chemistry names of these shortlisted compounds. Based on the Glide 
energy, docking scores, and interactions at the active site, 10 compounds 
were selected after IFD, as they demonstrated stronger binding energies 
with the predicted binding pockets compared to other compounds. 
Table  4 summarizes the docking scores, Glide energies, hydrogen 
bonds, and hydrophobic interactions of the top 10 compounds (out of 
20 compounds screened from IFD) with MqnB. The ligand interaction 
diagrams are shown in Fig. 5. Notably, compound 1 exhibited the lowest 
binding energy of −84.14 kcaL/moL and formed hydrogen bonds 
with residues Arg7, Glu12, Asn125, Met126, and Asn150, along with 
hydrophobic interactions involving Asn8, Glu9, Leu11, Ser46, Ile106, 
His164, Lys168, and Leu171. Substrate (futalosine) shows binding 
energy of −68.26 kcaL/moL and forms hydrogen bonds with Asn5, 
Gly6, Asn150, and lys161 residues and forms hydrophobic interactions 
with Ala5, Gly6, Arg7, Ser46, Gly48, Ile106, Asn125, Met126, Ala 156, 
His157, and Phe160.

Based on the docking results, three compounds were shortlisted and 
the compounds showed strong interactions with active site residues 
(Fig. 6a-e). The binding affinities of these compounds were further 
confirmed through docking scores and protein-ligand interactions. 
Notably, compound 1 (lead1) showed the highest affinity with multiple 
hydrogen bond interactions involving key residues, suggesting a strong 
potential for binding at the active site.

MD simulation
MqnB-lead complexes were subjected to a 200 ns MD simulation to 
assess the stability of the protein-ligand interactions. Root mean square 
deviation (RMSD) analysis of the protein backbone indicated that all 
complexes stabilized after 100 ns, with minimal fluctuations (Fig. 7a). 
Similarly, the RMSF plot showed that the binding site residues exhibited 
limited flexibility, indicating stable binding interactions throughout the 
simulation (Fig. 7b). The SASA and radius of gyration graphs further 
confirmed that the complexes maintained their compact structure 

and consistent solvent exposure (Fig.  7c-d). Hydrogen bond analysis 
revealed that the lead compounds formed stable hydrogen bonds 
throughout the simulation (Fig. 8a-d). The presence of stable hydrogen 
bonds over the course of the simulation indicates that the compound 
remains bound within the active site, supporting its potential as a high-
affinity ligand.

Conformational analysis of MD snapshots
The conformational snapshots at initial, 100 ns, and 200 ns were 
analyzed to understand the ligand’s behavior within the binding 
pocket over time (Fig. 9). All three lead compounds maintained stable 
interactions with the active site, with minor positional adjustments 
observed in the binding poses. The conformational analysis of MD 
snapshots shows that lead1 initially interacted with Arg7, Gly124, 
Asn125, Met126, and Asn150 and interacted with Glu9, Ser46, and 
Ser149 by 100 ns, and then with Asn8, Ser46, Ser149, and Lys161 at 
200 ns.

Lead2 formed initial interactions with Gly6, Arg7, Asn8, Ser46, and 
Asn125, later made interactions with Ala5, Gly6, Glu9, and Ser46 
at 100 ns, and Gly6, Arg7, Glu9, Ser46, and Asn125 at 200 ns. Lead3 
made initial interactions with Gly6, Asn8, Ser46, Gly124, Asn125, 
Ser149, and Asn150, and then it showed key interactions with Asn8 
at 100 ns and His164 at 200 ns. Substrate made initial interactions 
with Asn150, Asn8, Glu124, and Lys161, later made interactions with 
Asn150, Ser149, and Asn125 by 100 ns, and then with Asn150 and 
Ser149. These patterns indicate dynamic yet stable interactions, with 
residues such as Ser46, Asn125, Ser149, and His164 showing persistent 
interactions, suggesting their importance in maintaining ligand binding 
and stability. This consistency in binding interactions with active site 
residues highlights that these leads could be considered as a promising 
target for MqnB inhibition.

Hydrogen bond analysis in the best representative model
To further analyze the conformational change of the MqnB protein, 
clustering analysis was carried out over the last 100 ns simulation run 

Table 1: SiteMap results for the predicted binding sites of MqnB

Site no Residues SiteScore Size (Å3) Dscore
1 Cys4, Ala5, Gly6, Arg7, Asn8, Glu9, Thr10, Leu11, Lys12, Ile17, Phe43, Ile44, Gly45, Ser46, Ala47, Gly48, 

Tyr50, Ser103, Ile106, His107, Glu124, Asn125, Met126, Glu127, Ser149, Asn150, Ala152, Gly153, 
Leu154, Ala156, His157, Phe160, His164, Val167, Lys168, Gln169, Leu171, Glu172

1.035 196 1.032

2 Leu21, Ile22, Ala25, Gln67, Val68, Glu69, Glu70, Lys72, His74, Asn76, Tyr78, Thr79, Pro80, Ser102, 
Ser103, Asn104, Tyr105, Phe129, Ser130, Ser133

0.988 95 1.022

3 Ser40, Glu61, Val63, Ile87, Thr89, Lys90, Glu91, Arg97, Lys141, Ala142, Lys143 0.737 32 0.673
4 Glu110, His151, Ala152, Gly153, Leu154, 155, Ala156, Glu159 0.507 24 0.426

Fig. 3: (a) Ramachandran plot for the best representative model after 200 ns molecular dynamics run (b) the best representative model

a b
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Fig. 4: MqnB best representative structure obtained after molecular dynamics analysis and the active site residues

Fig. 5: Ligand interaction of top 10 compounds with MqnB

using GROMACS. Representative structures were extracted from the 
least RMSD frame in clustering analysis. Fig. 10a shows a superposed 

image of the representative models and Fig. 10b shows the ligand 
interaction map for lead1, lead2, lead3, and substrate.
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Table 2: Virtual screening filters and shortlisted compounds

Filters No. of 
compounds

Initial 4,06,760
After high throughput virtual screening docking 21,670
After standard precision docking 2162
After extra precision docking 200

It was observed that the best representative structure for the MqnB-
lead1 complex from the cluster showed interactions with residues 
Glu9, Ser46, and Ser149; lead2 showed interactions Ala5, Gly6, Glu9, 
Ser46, Asn125, and His164; lead3 showed interactions His164 and 
MqnB-substrate showed interactions with Arg7, Ser46, Ser149, and 
Asn150. The residues Ser46 and Ser149 are consistently observed in 
the conformational snapshots making hydrogen bond interactions at 
regular 100 ns interval frames, as well as in the clustering analysis. 

Fig. 6: (a) Superposition of the best-docked poses of MqnB in complex with lead1, lead2, lead3, and substrate. Ligplot representation 
showing active site interactions of MqnB complexed with (b) lead1 (c) lead2 (d) lead3, and (e) substrate

a

b

d e

c

Fig. 7: Molecular dynamics trajectories of MqnB in complex with a substrate (red) lead1 (green), lead2 (blue), lead3 (yellow), and MqnB 
apo form (black) (A) protein backbone RMSD graph (B) RMSF graph (c) radius of gyration (d) SASA for the 200ns simulation run

a b

c d
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Table 4: Molecular docking results showing score, energy, hydrogen bond, and hydrophobic interactions

Compound no. Docking score 
(kcaL/moL)

Glide Energy 
(kcaL/moL)

Hydrogen bond interactions Hydrophobic interactions

1 −10.51 −84.14 Arg7, Glu12, Asn125, Met126, 
Asn150

Asn8, Glu9, Leu11, Ser46, Ile106, His164, Lys168, Leu171

2 −11.28 −79.79 Gly6, Asn8, Arg7, Ser46, Asn125 Ala5, Glu9, Leu11, Phe43, Ile44, Gly45, Ala47, Gly48, 
Met126, Ser149, Asn150, Phe160, His164, Val167, Lys168, 
Leu171

3 −9.04 −78.63 Gly6, Asn8, Ser46, Gly124, 
Asn125, Ser149, Asn150

Cys4, Ala5, Arg7, Glu9, Thr10, Leu11, Phe43, Ile44, Gly45, 
Ala47, Gly48, Ile106, Ala152, Ala156, Phe160, His164, 
Val167, Lys168, Leu171 

4 −11.15 −72.87 Gly6, Arg7, Gly48, His107, 
Gly124, Asn150, Gly153, 
Leu154

Asn8, Glu9, Ser46, Ala47, Ile106, Thr108, Asn125, Met126, 
Ala152, Gly156, His157, Phe160

5 −11.52 −72.41 Arg7, Asn8, Tyr50, Ser103, 
Tyr105, Met126, Glu127

Ser46, Ile106, His107, Thr108, Gly124, Asn125, Asn150, 
Ala152, Gly156, His157, Phe160

6 −11.16 −72.31 Asn8, Gly124, Glu127, Asn150 Ala5, Gly6, Arg7, Phe43, Ser46, Ile106, His107, Thr108, 
Asn125, Met126, Ala152, Ala156, His157, Phe160

7 −10.83 −71.62 Arg7, Asn150, Lys161 Asn8, Glu9, Ile44, Gly45, Ser46, Gly48, Ile106, Met126, 
Phe160, His164, Lys168

8 −11.88 −70.36 Ser46, Asn125, Met126 Asn8, Glu9, Leu11, Phe43, Ile44, Gly45, Ile106, Glu124, 
His164, Val167, Lys168, Leu171

9 −6.139 −70.27 Arg7, Glu9, Ile44, Ser46, Gly124, 
Asn125, Asn150

Cys4, Ala5, Thr8, Leu11, Gly45, Ala47, Gly48, Ile106, 
Phe160, Lys168, Leu171

10 −10.16 −67.61 Gly6, Met126, Ser149, Lys168 Asn8, Glu9, Leu11, Ile44, Ser46, Gly48, Gly124, Asn125, 
Asn150, Phe160

Futalosine 
(substrate)

−11.36 −68.26 Asn5, Gly6, Asn150, Lys161 Ala5, Gly6, Arg7, Ser46, Gly48, Ile106, Asn125, Met126, 
Ala156, His157, Phe160

These residues consistently played a role in ligand binding, highlighting 
their importance in maintaining the stability and affinity of the ligand-
protein complexes throughout the simulation.

QikProp analysis
The QikProp results in Table 5 provide vital insights into the drug-like 
properties of the lead1, lead2, and lead3 compounds, as well as for the 
substrate. We have evaluated the compounds’ potential as therapeutic 

candidates by comparing their physicochemical features with those of 
the substrate.

The QikProp results indicate that the compounds have drug-like 
characteristics comparable to the substrate. Their molecular weights, 
SASA, hydrogen bonding properties, lipophilicity, partitioning behavior, 
and skin permeability are all within acceptable limits. Considering 
lipophilicity, both QPlogPoct and QPlogPw values are well within 

Fig. 8: Graphs show hydrogen bonds made by (a) substrate (b) lead1 (green) (c) lead2 (blue) and (d) lead3 (yellow)

a b

c d
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Table 5: QikProp analysis of lead compounds

QikProp descriptors Reference range Lead1 Lead2 Lead3 Substrate
molMW 130–725 457.49 430.52 488.62 414.37
SASA 500–2000 826.18 766.48 77243 569.41
FOSA 0–750 152.46 367.60 512.15 101.86
Donor HB 0.0–6.0 2 3 4 4
Accept HB 2.0–20.0 6 7.25 8.7 14.1
CNS –2: inactive

to+2: active
−2 −2 −2 −2

HOA 1: low
2: medium
3: high

1 2 1 1

QPlogPoct 8.0–35.0 23.75 23.51 25.64 26.96
QplogPw 4.0–45.0 13.36 13.64 14.02 22.47
QplogPo/w −2.0–6.5 4.09 3.15 3.76 −0.90
QplogBB −3.0–1.2 −3.25 −2.37 −2.15 −1.82
QPlogS −6.5–0.5 −7.65 −6.08 −4.17 −1.89
QPlogKp −8.0–1.0 −4.42 −4.20 −2.84 −5.98

Fig. 9: Superposition of conformational snapshots of (a) lead1 (b) lead2 (c) lead3 (d) substrate at initial (green),  
100ns (cyan), and 200ns (magenta)

d

a

b

c
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the reference ranges, showing that all molecules, including the 
substrate, have appropriate lipophilicity. The QPlogPo/w values for 
all compounds are within the reference range, indicating reasonable 
partitioning behavior. The aqueous solubility (QPlogS) of all substances 
falls within the reference range, suggesting that these molecules have 
high aqueous solubility, which is critical for drug development. The 
anticipated blood-brain barrier penetration (QPlogBB) values for lead2 
and lead3 are within the reference range, indicating that they have a 
reasonable chance of crossing the blood–brain barrier. Finally, the 
skin permeability (QPlogKp) values for all compounds are within the 
reference range, indicating good skin permeability.

CONCLUSION

H. pylori uses the futalosine pathway for bacterial respiration and 
inhibiting this pathway can help control the growth of H. pylori 
infections, as humans and other gut microbiomes lack this pathway. 
To identify the novel potential inhibitors, the three-dimensional 
structure model of MqnB was predicted followed by active site 
prediction. SBVS was performed for compounds from the COCONUT 
database. Based on the results of virtual screening, the top 20 
compounds were subjected to IFD. Based on a good docking score, 

Glide energy, and hydrogen bonding, three lead compounds were 
chosen. The apo form, MqnB-substrate/lead complexes were 
subjected to 200 ns MD simulation using GROMACS. MD simulation 
results showed that the compounds showed minimal deviations in 
protein RMSD, SASA, and RGYR graphs. Consistent hydrogen bonds 
were maintained at regular intervals for all the complexes. The lead 
compounds also exhibited favorable physicochemical properties, 
suggesting their potential as drug candidates. Notably, our study 
demonstrated that the lead compounds made interactions with 
residues such as Ser46 and Ser149 to form hydrogen bonds in both 
the substrate and lead compounds. These results show that identified 
lead compounds interact with key residues with MqnB. The lead 
compounds demonstrate the potential as inhibitors, providing a 
strong foundation for further research and development of novel 
drugs against H. pylori infections.
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