A STUDY ABOUT ANTELMINTIC EFFECT OF PUNICA GRAMATUM L BARK ON VETERINARY ENDOPARASITES

NGUYEN THANH HAI 1*, NGUYEN VAN THANH2, BUI THI THO3, MIYAMOTO ATSUSHI4

1PhD, Department of Plant Bio-technology, Faculty of Biotechnology, Hanoi University of Agriculture, Trau Quy crossing, Gia Lam district, Hanoi, Vietnam., 2PhD, DVM, Department of Animal surgery and reproduction, Faculty of Veterinary, Hanoi University of Agriculture, Trau Quy crossing, Gia Lam district, Hanoi, Vietnam., 3PhD, DVM, Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.

Email: ThanhHaiKagoshimaJapan@yahoo.com

Received: 20 January 2014, Revised and Accepted: 20 February 2014

ABSTRACT

Objective: The present research was performed to evaluate the antelmintic activity of Punica granatum L plant bark on veterinary endoparasites.

Method: We used 4 methods to extract the bark of Punica granatum L plant, including using water, water and heat, water with previous soak in NaOH 5 % and water with previous soak in CH3COOH 5 %. Those solutions then were tested with animal endoparasites, including porcine ascarids, porcine cestodes, chicken ascarids and chicken trematodes at the concentrations of 20, 10, 5, 2.5 and 1.25 %. Their antelmintic activity was evaluated through the lethal time by which the treatment of extracts induced the death of tested parasites. Result: bark of Punica granatum L plant possesses antelmintic efficacy with animal endoparasites. All of extracts at 5 % were able to kill 100 % of experimental parasites within the tested time (360 minutes). Extraction with CH3COOH 5 % had the best effect, with the shortest necessary treatment time in all of tested concentrations with 4 experimental endoparasites. Conclusion: Punica granatum L plant bark has in vitro antelmintic on porcine ascarids, porcine cestodes, chicken ascarids and chicken trematodes, and follow-up researches are necessary to assess the in vivo effect.

Keywords: Punica granatum L, bark, extract, antelmintic effect, endoparasites

INTRODUCTION

Most of the veterinary endo-parasite infections in animals are chronic. Infestation with endoparasites in digestive tracts can cause significant economic losses because of long-term nutritional absorbance hazard lead to the loss of weight and productivity, and also increase the prevalence of many other diseases due to the animal immuno-depression [1]. The development of resistant strains of parasites to currently available anthelmintic drugs has been reported [2], [3], [4]. The continuous and long-term reliance on a small range of compounds has led to the development of drug resistance in many helminthic strains [5]. In addition, the increased public awareness for synthesis drug residues in consumed animal products which possessed potential to hazard human also enforces the search for alternative therapy. There is an increasing demand towards natural anthelmintics [6]. In the effort find alternatives for modern products, medicine plants serves as the most potential one [7]. Medicinal plants have been used to treat parasitism in animals for hundreds of years [8]. According to Gerold Rahmann and Hannah Seip [9]. 31 medicine plants and 8 mixtures of plants and other components have been considered as possible alternative anthelmintic for endoparasites. The in vitro and in vivo anthelmintic properties of many plants were also reported [10], [11]. Food supplements like papaya, cinnamon, turmeric, asafetida, long pepper, saffron, Moringa, bitter guard and fresh juice of pine apple also have anthelmintic property [12]. In Vietnam, medicine plants have been considered as a traditional therapy to control animal parasites with the advantages of less side-effect and inexpensive cost [13]. Following Vietnamese ethnic experiences, the bark of Punica granatum L has been known to have anthelmintic property and is usually applied to treat endoparasites for both human and animals, but its usage is only based on handed down knowledge [14], [15]. Therefore, it is necessary to research about this plant to verify the anthelmintic effectiveness and to propose the allopathic phytotherapeutical approach for its application.

MATERIAL AND METHODS

The collection of endoparasites

Experimental parasites, including porcine ascarids, porcine cestodes, chicken ascarids and chicken trematodes were collected in the local slaughter houses which are located near the laboratory (Vang market slaughter house and Da Ton market slaughter house, Trau Quy, Gia Lam, Hanoi). Samples were kept in physiological saline solution (PSS) to bring back to laboratory, and the authentify was performed in laboratory under the supervision of Associate professor Bui Thi Tho, department of pharmacology faculty of Veterinary Medicine, Hanoi university of agriculture. The tests with extracts were then started within 2 hs from the parasite collection time.

The collection and extraction of Punica granatum L bark

The bark of the Punica granatum L plants was collected on the period from February to April because following the advices of Vietnamese herbalists, spring season is the favorable period for this herb collection. The bark was then washed, preliminarily dried in the shadow for 3 to 4 sunny days, futher dried in the oven at 50 °C for 4 hs before being ground into powder with particle size less than 1 mm. The herb samples were kept in airtight plastic bags in the dried places for maximum 6 months before using.

We performed the extraction following the methods which was usually used for herb in Vietnam [16], [17]. Four methods, including (1) water with previous soak in CH3COOH 5 %, (2) water with previous soak in NaOH 5 %, (3) steeping in water and (4) boiling in water were performed to extract. For (1) and (2) methods, 50 g bark powder was wetted with 15 ml CH3COOH 5 % or 15 ml NaOH 5 % for 1 h before adding 100 ml of distilled water (DW) and further left for...
23 hs. For (3) method, 50 g powder was steeped in 115 ml DW for 24 hs. For (4) method, 50 g powder was boiled in 115 ml DW for 15 ms. Collected solutions were then filtered through 2 layers of cheese cloths. The filtrates were adjusted with DW to make 100 ml. HCl or NaOH 50 % was used to adjust the pH of the solutions to be from 6.9 to 7.1. The extracts were called acid-DW, bazo-DW, DW and hot-DW extracts, in accordance with the solvents which were used in (1), (2), (3) and (4) methods, respectively. The initial extracts were considered as 50 % (meaning 50 g in 100 ml) and were diluted by PSS to test at 20 %, 10 %, 5 %, 2.5 % and 1.25 % to test with endoparasites.

The extract treatment and the measurement of lethal time

The tests were conducted following the methods of Nguyen Nhu Vien [17]. In the preliminary tests, all of 10 parasites was put in petri dish that contained the extracts at different concentrations. The PSS was used in control groups. All of tested parasites were observed to survive for at least 24 hs in the PSS. We checked the paralysis of individual worms in experimental group every minute during the 360 ms of experiment. Paralysis was said to occur when the parasites lost their motility and do not revive even in the normal PSS.

The time that induced the death of 50 % experimental parasites, called lethal time 50 (LT50) and the time that induced the death of 100 % experimental parasites, called lethal time 100 (LT100), was calculated from the linear regression computerized between the time and the percentage of parasites died at that time.

Statistic analyse

Data was expressed as mean ± standard error [Mean ± SE]. Data were analyzed using the Statcel software (YamaI Hisae, Laboratory of mathematics, Faculty of Science, Saitama University, 1998). The result was considered significant at probability value less than 0.05 (p<0.05).

RESULTS

In order to evaluate the anthelmintic efficacy of Punica gramaatum L. bark, we measured and calculated the LT50 and LT100 of different extracts. The results were shown in Table 1.

Table 1: The LT50 and LT100 of extracts of Punica gramaatum L. plant bark on animal endoparasites.

<table>
<thead>
<tr>
<th>Extract</th>
<th>Conc.</th>
<th>Porcine ascarides</th>
<th>Porcine cestodes</th>
<th>Chicken ascarids</th>
<th>Chicken cestodes</th>
<th>Porcine ascarides</th>
<th>Porcine cestodes</th>
<th>Chicken ascarids</th>
<th>Chicken cestodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20%</td>
<td>10%</td>
<td>5%</td>
<td>Acid-DW</td>
<td>2.50%</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>120 ± 11.9</td>
<td>105 ± 2.3</td>
<td>105 ± 1.8</td>
<td>115 ± 10.8</td>
<td>70 ± 5.9</td>
<td>35 ± 3.2</td>
<td>30 ± 3.2</td>
<td>105 ± 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>90 ± 2.3</td>
<td>80 ± 2.3</td>
<td>80 ± 2.3</td>
<td>25 ± 3.3</td>
<td>20 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>75 ± 3.4</td>
<td>70 ± 4.2</td>
<td>70 ± 4.2</td>
<td>20 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>50 ± 5.4</td>
<td>45 ± 5.4</td>
<td>45 ± 5.4</td>
<td>20 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>25 ± 3.9</td>
<td>20 ± 4.2</td>
<td>20 ± 4.2</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>15 ± 2.3</td>
<td>10 ± 2.1</td>
<td>10 ± 2.1</td>
<td>25 ± 3.3</td>
<td>20 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>7.5 ± 3.3</td>
<td>5 ± 3.3</td>
<td>5 ± 3.3</td>
<td>25 ± 3.3</td>
<td>20 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>3.5 ± 2.3</td>
<td>3 ± 2.3</td>
<td>3 ± 2.3</td>
<td>25 ± 3.3</td>
<td>20 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>1.5 ± 2.3</td>
<td>1 ± 2.3</td>
<td>1 ± 2.3</td>
<td>25 ± 3.3</td>
<td>20 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>0.5 ± 2.3</td>
<td>0 ± 2.3</td>
<td>0 ± 2.3</td>
<td>25 ± 3.3</td>
<td>20 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25 ± 3.3</td>
<td>20 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25 ± 3.3</td>
<td>20 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25 ± 3.3</td>
<td>20 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25 ± 3.3</td>
<td>20 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25 ± 3.3</td>
<td>20 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25 ± 3.3</td>
<td>20 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25 ± 3.3</td>
<td>20 ± 2.3</td>
<td>15 ± 2.3</td>
<td>15 ± 2.3</td>
</tr>
</tbody>
</table>

(*n*) means that there was only n % of experimental parasite died after 360 ms of observation. (-) means that there was no experimental parasites died after 360 ms of observation. Means of the same extract at different concentrations which have different superscripts (a, b, c, d, e) are significantly different (p < 0.05) by one-way ANOVA and Post – hoc Fisher’s least significant difference test. Bold letters indicates the shortest LT 50 and LT 100 with different endoparasites.

From Table 1, we see that the extracts of Punica gramaatum L plant bark possessed the anthelmintic effect and this effect is dose-dependent in all of tested extracts, because following the dilution of the concentration, the LT50 and LT100 of each extract to each endoparasite was significantly longer. We also observed that at 5 %, all of the extracts were able to kill all tested parasites with the LT100 from 20 ± 2.2 ms (acid-DW extract 20 % to chicken cestodes) to 325 ± 3.9 ms (DW extract 5 % to chicken ascarids). Acid-DW extract at 20% had the best anthelmintic effects, shown by the lowest LT50 and LT100 values to all of tested endoparasites, including porcine ascarides (40 ± 2.3 ms and 95 ± 5.3 ms), porcine cestodes (15 ± 3.3 ms and 25 ± 3.3 ms), chicken ascarids (20 ± 5.1 ms and 50 ± 2.9 ms) and chicken cestodes (10 ± 2.1 ms and 20 ± 2.2 ms).

In order to evaluate the effect of different extracts, we compared the LT100 values at the concentrations of 20 %, 10 % and 5 %, the concentrations which were able to kill all of experimental parasites within tested time (360 ms). The results are shown in Figure 1.
Fig. 1: The LT100 values of extracts at the concentration of 20 % (A), 10 % (B) and 5 % (C).

Means values of extracts to each endoparasite with different superscripts (a, b, c, d, e) are significantly different \((p < 0.05)\) by one-way ANOVA and Post-hoc Fisher’s least significant difference test.

From Figure 1, we observed that acid-DW had the significantly lowest LT100 with all of tested endoparasites in all of extracts at 20 % (Figure 1A), 10 % (Figure 1B) and 5 % (Figure 1C). Following acid-DW extracts, bazo-DW or hot-DW extracts hold the second highest effect in 11 of 12 tests, and with only one exception in case of 5 % extracts with chicken trematodes, in which they processed the lowest efficacy with the longest LT100 (Figure 1C). DW extracts had the weakest effect with the longest LT100 in 11 of 12 tests. There was only one exception of 5 % extracts with chicken trematodes, in which this extract had the highest effect (Figure 1C).

In order to evaluate the sensitivity and resistance of different endoparasites with *Punica granatum* L bark extracts, we compared the LT100 values of different endoparasites with each extract. The results were shown in Figure 2.

Fig. 2: The LT100 values of 20 % acid-DW (Figure A), 20 % bazo-DW (Figure B), 20 % DW (Figure C) and 20 % hot-DW (Figure D).

Means values of LT100 at each concentration with different superscripts (a, b, c, d) are significantly different \((p < 0.05)\) by one-way ANOVA and Post-hoc Fisher’s least significant difference test.

From Figure 2, we observed that regardless of the different extracts and different concentrations, the chicken trematodes was always the most sensitive parasite, which was shown by the significant lowest LT100 values in all 12 cases (Figure 2A, 2B, 2C, 2D). Second to chicken trematodes, porcine cestodes were also high sensitive with *Punica granatum* L bark extracts. This parasite hold the
The present study shows the in vitro anthelmintic activity of *Punica granatum* L bark extracts with animal endoparasites, and therefore partly explains the traditional application of this herb for parasite treatment. Extraction with CH3COOH and DW had the best efficacy in all of tested extracts and should be focused in the follow-up in vivo testing.

ACKNOWLEDGEMENT

This research was supported by the grant from Vietnam-Belgium project in Hanoi University of Agriculture, Vietnam.

REFERENCE

19. Hounzangebe-AdoteM'Spolini, V., Fouraste, L, Moutairou, K, Hoste, H. In vitro effects of four tropical plants on three life-
