• Maha Z Rizk
  • Azza A Matloub
  • Ghadha I Fouad


Objective: This study aims to evaluate the relation between hypercholesterolemia and aging, beside the role of Ulva fasciata polysaccharides (UFP)
aqueous extracts in lowering cholesterol in aged hypercholesterolemia-induced rats was demonstrated.
Method: A total of 140 male Wister rats weighing 120±10 g, 6-9 months old were used. Hypercholesterolemia was induced in rats by feeding rats
high-fat diet (cholesterol), cholesterol was orally administrated at a dose of (30 mg/0.3 ml olive oil/1 kg animal) 5 times a week for 12 consecutive
weeks, lard fat was mixed with normal diet (1 kg of animal lard was added to 5 kg of normal diet), the occurrence of hypercholesterolemia was
determined by measuring the lipid profile (TC, LDL-C, high-density lipoprotein-cholesterol [HDL-C], triglyceride [TG]), the old hypercholesterolemic
(HC) rats were only used.
Results: The antihypercholesterolemic (HC) effects of ulvan, the sulfated polysaccharide extracted from the green alga Ulvafasciata, in aged rats,
were studied. Algal treatment declared a significant reduction in serum total lipid level while, elevation of high-density lipoprotein-cholesterol level
was noticed in HC rats. Moreover, the algal treatment significantly decreased serum liver and kidney functions biomarkers and improved the hepatic
antioxidant levels in hyperlipidemic aged rats. In addition, ulvan administration significantly suppressed the expression of tumor necrosis factoralpha,
and cell vascular
and intracellular
the anti-inflammatory
the histopathological
of aorta,
of HC-treated
the Ulva

the amelioration
of hyperlipidemia
in aged rats.
Conclusion: It could be concluded that, in comparison with the standard anti-HC drug (fluvastatin) used in this study, both cold and hot UFP algal
extracts of U. fasciata demonstrated appreciable anti-hypercholesterolemic property, in addition to their antioxidant activity even in the old HC
stressed rats. Thus, it could be used as a natural lipid regulator.
Keywords: Ulvafasciata, Hypercholesterolemia, Polysaccharides, Rats, Sulfated polysaccharides, Aging, Hyper-cholesterolemia.


Download data is not yet available.



Parini P, Angelin B, Rudling M. Cholesterol and lipoprotein metabolism

in aging: Reversal of hypercholesterolemia by growth hormone

Asian J Pharm Clin Res, Vol 9, Issue 3, 2016, 165-176

Rizk et al.

treatment in old rats. Arterioscler Thromb Vasc Biol 1999;19(4):832-9.

Gälman C, Matasconi M, Persson L, Parini P, Angelin B, Rudling M.

Age-induced hypercholesterolemia in the rat relates to reduced

elimination but not increased intestinal absorption of cholesterol. Am

J Physiol Endocrinol Metab 2007;293(3):E737-42.

Trapani L, Pallottini V. Age-related hypercholesterolemia and

HMG-CoA reductase dysregulation: Sex does matter (A gender

perspective). Curr Gerontol Geriatr Res 2010;2010:7.

Corpas E, Harman SM, Blackman MR. Human growth hormone and

human aging. Endocr Rev 1993;14(1):20-39.

Brown MS, Goldstein JL. A proteolytic pathway that controls the

cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci

USA 1999;96(20):11041-8.

Espenshade PJ, Hughes AL. Regulation of sterol synthesis in

eukaryotes. Annu Rev Genet 2007;41:401-27.

Choi YS, Ide T, Sugano M. Age-related changes in the regulation of

cholesterol metabolism in rats. Exp Gerontol 1987;22(5):339-49.

Wilhelmsen L, Johansson S, Rosengren A, Wallin I, Dotevall A,

Lappas G. Risk factors for cardiovascular disease during the period

-1995 in Göteborg, Sweden. The GOT-MONICA project. J Intern

Med 1997;242(3):199-211.

Parini P, Angelin B, Rudling M. Cholesterol and lipoprotein metabolism

in aging: Reversal of hypercholesterolemia by growth hormone

treatment in old rats. Arterioscler Thromb Vasc Biol 1999;19(4):832-9.

Marino M, Pallottini V, D’Eramo C, Cavallini G, Bergamini E,

Trentalance A. Age-related changes of cholesterol and dolichol

biosynthesis in rat liver. Mech Ageing Dev 2002;123(8):1183-9.

Pallottini V, Martini C, Cavallini G, Bergamini E, Mustard KJ,

Hardie DG, et al. Age-related HMG-CoA reductase deregulation

depends on ROS-induced p38 activation. Mech Ageing Dev


Harman D. Aging: A theory based on free radical and radiation

chemistry. J Gerontol 1956;11(3):298-300.

Stadtman ER. Protein oxidation and aging. Free Radic Res


Lammert F, Wang DQ. New insights into the genetic regulation of

intestinal cholesterol absorption. Gastroenterology 2005;129(2):718-34.

Wang DQ. Aging per se is an independent risk factor for cholesterol

gallstone formation in gallstone susceptible mice. J Lipid Res


Tziomalos K, Athyros VG, Karagiannis A, Mikhailidis DP.

Management of statin-intolerant high-risk patients. Curr Vasc

Pharmacol 2010;8(5):632-7.

Qi HM, Huang LY, Liu XL, Liu DM, Zhang QB, Liu SM.

Antihyperlipidemic activity of high sulfate content derivative of

polysaccharide extracted from Ulva pertusa (Chlorophyta). Carbohydr

Polym 2012;87(2):1637-40.

Sathivel A, Raghavendran HR, Srinivasan P, Devaki T. Antiperoxidative










D-galactosamine induced

hepatitis in rats. Food




Qi HM, Zhao TT, Zhang QB, Li ZE, Zhao ZQ, Xing RE. Antioxidant

activity of different molecular weight sulfated polysaccharides from

Ulva pertusa Kjellm (Chlorophyta). J Appl Phycol 2005;17:527-34.

Pengzhan Y, Quanbin Z, Ning L, Zuhong X, Yanmei W, Zhïen L.

Polysaccharides from Ulva pertusa (Chlorophyta) and preliminary

studies on their anti-hyperlipidemia activity. J Appl Phycol


Adaramoye OA, Akintayo O, Achem J, Fafunso MA. Lipid-lowering

effects of methanolic extract of Vernonia amygdalina leaves in rats fed

on high cholesterol diet. Vasc Health Risk Manag 2008;4(1):235-41.

Koter M, Broncel M, Chojnowska-Jezierska J, Klikczynska K,

Franiak I. The effect of atorvastatin on erythrocyte membranes and

serum lipids in patients with type-2 hypercholesterolemia. Eur J Clin

Pharmacol 2002;58(8):501-6.

Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic

determination of total serum cholesterol. Clin Chem 1974;20(4):470-5.

ZÖllner N, Kirsch K. Colorimetric method for determination of total

lipids. J Expl Med 962;135:545-550.

Fassati P, Prencipe L. Serum triglycerides determined colorimetrically

with an enzyme that produces hydrogen peroxide. Clin Chem


Lopes-Virella MF, Stone P, Ellis S, Colwell JA. Cholesterol

determination in high-density lipoproteins separated by three different

methods. Clin Chem 1977;23(5):882-4.

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the

concentration of low-density lipoprotein cholesterol in plasma, without

use of the preparative ultracentrifuge. Clin Chem 1972;18(6):499-502.

Norbert WT. Clinical Guide to Laboratory Tests. 3

ed. Philadelphia, PA:

W.B. Saunders Company; 1995.


Reitman S, Frankel S. A colorimetric method for the determination of

serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J

Clin Pathol 1957;28(1):56-63.

Belfield A, Goldberg DM. Colorimetric determination of alkaline

phosphatase activity. Enzyme 1971;12:561-68.

Walters M, Gerade H. Ultramicro-method for the determination

of conjugated and total bilirubin in serum or plasma. Microchem

J 1970;15(2):231-43.

Bradford MM. A rapid and sensitive method for the quantitation of

microgram quantities of protein utilizing the principle of protein-dye

binding. Anal Biochem 1976;72:248-54.

Doumas BT, Watson WA, Biggs HG. Albumin standards and the

measurement of serum albumin with bromcresol green. Clin Chim Acta


Trinder P. Determination of glucose in blood using glucose oxidase

with an alternative oxygen acceptor. Ann Clin Biochem 1969;6(1):24-5.

Beutler E, Duron O, Kelly BM. Improved method for the determination

of blood glutathione. J Lab Clin Med 1963;61:882-8.

Satoh K. Serum lipid peroxide in cerebrovascular disorders determined

by a new colorimetric method. Clin Chim Acta 1978;90(1):37-43.

Fawcett JK, Scott JE. A rapid and precise method for the determination

of urea. J Clin Pathol 1960;13:156-9.

Schirmeister J. Determination of creatinine level. Dtsch Med Wschr


Carlson SE, Mitchell AD, Carter ML, Goldfarb S. Evidence that

physiologic levels of circulating estrogens and neonatal seximprinting


postpubertal hepatic





reductase activity.

Biochim Biophys



Borai H, Ezz KM, Rizk MZ, et al. Hypolipidemic and Anti- atherogenic

Effect of Sulphated Polysaccharidesfrom the Green Alga Ulva fasciata.

Int J Pharm Sci Rev Res 2015;31(1)1-12.

Sathivel A, Raghavendran HR, Srinivasan P, Devaki T. Antiperoxidative










D-galactosamine induced

hepatitis in rats. Food




Castro R, Piazzon MC, Zarra I, Leiro J, Noya M, Lamas J. Stimulation

of turbot phagocytes by Ulva rigida C. Agardh polysaccharides.

Aquaculture 2006;254:9-20.

Levine GN, Keaney JF, Vita JA. Cholesterol reduction in cardiovascular

disease-clinical benefits and possible mechanisms. N Engl J Med.


Parini P, Angelin B, Rudling M. Cholesterol and lipoprotein

metabolism in aging: Reversal of hypercholesterolemia by growth

hormone treatment in old rats. Arterioscler Thromb Vasc Biol


Matasconi M, Parini P, Angelin B, Rudling M. Pituitary control of

cholesterol metabolism in normal and LDL receptor knock-out mice:

Effects of hypophysectomy and growth hormone treatment. Biochim

Biophys Acta 2005;1736(3):221-7.

Rudling M, Parini P, Angelin B. Growth hormone and bile acid

synthesis. Key role for the activity of hepatic microsomal cholesterol

alpha-hydroxylase in the rat. J Clin Invest 1997;99(9):2239-45.

Lusis AJ. Atherosclerosis. Nature 2000;407(6801):233-41.

Stalenhoef AF, De Graaf J. Association of fasting and non-fasting

serum triglycerides with cardiovascular disease and the role of

remnant-like lipoproteins and small dense LDL-C. Curr Opin Lipidol


Godard M, De´corde K, Ventura E, Soteras G, Baccou JC, Cristol JP,

et al. Polysaccharides from the green alga Ulva rigida improve the

antioxidant status and prevent fatty streak lesions in the high cholesterol

fed hamster, an animal model of nutritionally-induced atherosclerosis.

Food Chem 2009;115(1):176-80.

Noori S, Zafar H, Mahboob T. Biochemical effectiveness of cocoa

powder on electrolytes homeostasis, liver and cardiac specific enzymes

and renal function. Pak J Nutr 2009;8:882-6.

Nyblom H, Berggren U, Balldin J, Olsson R. High AST/ALT ratio may

indicate advanced alcoholic liver disease rather than heavy drinking.

Alcohol Alcohol 2004;39(4):336-9.

Sudhahar V, Kumar SA, Sudharsan PT, Varalakshmi P. Protective

effect of lupeol and its ester on cardiac abnormalities in experimental

hypercholesterolemia. Vascul Pharmacol 2007;46(6):412-18.

Kim AR, Lee JJ, Lee YM, Jung HO, Lee MY. Cholesterol-lowering and

anti-obesity effects of Polymnia sonchifolia Poepp. and Endl. Powder

Asian J Pharm Clin Res, Vol 9, Issue 3, 2016, 165-176

Rizk et al.

in rats fed a high fat-high cholesterol diet. J Korean Soc Food Sci Nutr


Awada NE, Hamed MA, Seida AA, Elbatanony MM. Efficacy of Ficus

spp. on renal injury induced by hypercholesterolemia. Nat Prod Res


IghodaroO.M, Omole JO, Adejuwon AO, Odunaiya AA. Effects of

Parinari polyandra seed extract on blood glucose level and biochemical

indices in wistar rats. Int J Diabetes Res 2012;1(4):68-72.

Herreo M, Cifuentes A, Ibanez E. Sub- and supercritical fluid extraction

of functional ingredients from different natural sources: Plants, foodby-products,

algae and microalgae. Food Chem 2006;98:136-48.

Kopec KL, Burns D. Nonalcoholic fatty liver disease: A review of

the spectrum of disease, diagnosis, and therapy. Nutr Clin Pract


Zhang Q, Li N, Zhou G, Lu X, Xu Z, Li Z. In vivo antioxidant activity

of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in

aging mice. Pharmacol Res 2003;48(2):151-5.

Qi H, Zhang Q, Zhao T, Hu R, Zhang K, Li Z. In vitro antioxidant

activity of acetylated and benzoylated derivatives of polysaccharide

extracted from Ulva pertusa (Chlorophyta). Bioorg Med Chem Lett


Sun H, Koike T, Ichikawa T, Hatakeyama K, Shiomi M, Zhang B,

et al. C-reactive protein in atherosclerotic lesions: Its origin and

pathophysiological significance. Am J Pathol 2005;167(4):1139-48.

Hadi HA, Carr CS, Al Suwaidi J. Endothelial dysfunction:

Cardiovascular risk factors, therapy, and outcome. Vasc Health Risk

Manag 2005;1(3):183-98.

Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and

atherosclerosis. Atherosclerosis 2003;170(2):191-203.

Kamesh V, Sumathi T. Antihypercholesterolemic effect of Bacopa

monniera Linn. on high cholesterol diet induced hypercholesterolemia

in rats. Asian Pac J Trop Med 2012;5(12):949-55.

Posuwan J, Prangthip P, Leardkamolkarn V, Yamborisut U, Surasiang R,

Charoensiri R, et al. Long-term supplementation of high pigmented

rice bran oil (Oryza sativa L.) on amelioration of oxidative stress and

histological changes in streptozotocin-induced diabetic rats fed a high

fat diet; Riceberry bran oil. Food Chem 2013;138(1):501-8.

Rezq AA, El-Khamisy AE. Hypolipidemic and Hypocholestermic

effect of pine nuts in rats fed high fat, cholesterol-diet. World Appl Sci

J 2011;15(12):1667-77.

Jouyban A, Shoja MM, Ardalan MR, Khoubnasabjafari M, Sadighi A,

Tubbs RS, et al. The effect of quince leaf decoction on renal injury

induced by hypercholesterolemia in rabbits: A pilot study. J Med Plants

Res 2011;5(21):5291-5.



How to Cite

Z Rizk, M., H. F. . ALY, A. A. Matloub, and G. I Fouad. “THE ANTI-HYPERCHOLESTEROLEMIC EFFECT OF ULVAN POLYSACCHARIDE EXTRACTED FROM THE GREEN ALGA ULVAFASCIATA ON AGED HYPERCHOLESTEROLEMIC RATS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 9, no. 3, May 2016, pp. 165-76,



Original Article(s)

Most read articles by the same author(s)