• Soumya p Rout School of Pharmaceutical Sciences,S'O'A University, Kalinganagar, Ghatikia, Bhubaneswar, Odisha - 751003
  • Durga m Kar School of Pharmaceutical Sciences,S'O'A University, Kalinganagar, Ghatikia, Bhubaneswar, Odisha - 751003
  • Laxmidhar Maharana School of Pharmaceutical Sciences,S'O'A University, Kalinganagar, Ghatikia, Bhubaneswar, Odisha - 751003



Context: Several species of the genus Annona were reported to have hypoglycemic properties and this makes Annona reticulata Linn. (Annonaceae)
an interesting plant for investigating its anti-hyperglycemic potential.
Objective: Different fractions prepared from hydro-alcoholic extract of A. reticulata leave were investigated for their blood glucose lowering effect on
Streptozotocin (STZ) induced hyperglycemic rats.
Methods: Ethyl acetate, methanol, and residual fractions (at dose level of 100 mg/kg by oral route) prepared from the hydro-alcoholic extract of
A. reticulata leave were administered for 14 consecutive days to STZ induced hyperglycemic rats for evaluation of their anti-hyperglycemic potential.
Anti-hyperglycemic potential was assessed by observation of a decrease in fasting blood glucose level.
Results: The studies revealed that ethyl acetate fraction decreased the blood glucose level of hyperglycemic rats from 447.67 to 234.17 mg/dL and is
significant (p<0.001) when compared with diabetic control group. The residual fraction and methanolic fraction decreased blood glucose level from
417.83 to 402.50 mg/dL and 432.33 to 371.67 mg/dL respectively but not significant when compared with the diabetic control group. Standard drug
metformin (dose 300 mg/kg) reduced the blood glucose level from 447.33 to 219.50 mg/dL.
Discussion: Ethyl acetate fraction at tested dose level was capable not only to control the elevated blood glucose level but also able to attenuate
certain secondary parameters associated with STZ induced hyperglycemia.
Conclusion: This study suggested that the ethyl acetate fraction prepared from hydro-alcoholic extract of A. reticulata leave exhibit potential antihyperglycemic
in the tested
models and should be investigated
Keywords: Streptozotocin, Diabetes, Dyslipidemia.


Download data is not yet available.



Andrade-Cetto A, Heinrich M. Mexican plants with hypoglycaemic

effect used in the treatment of diabetes. J Ethnopharmacol


Shirwaikar A, Rajendran K, Dinesh Kumar C, Bodla R. Antidiabetic

activity of aqueous leaf extract of Annona squamosa in streptozotocinnicotinamide


diabetic rats. J



ArunJyothi B, Venkatesh K, Chakrapani P, Roja Rani A. Phytochemical

and Pharmacological potential of Annona cherimola - A review. Int J

Phytomed 2011;3:439-47.

Adeyemi DO, Komolafe OA, Adewole OS, Obuotor EM, Adenowo TK.

Anti hyperglycemic activities of Annona muricata (Linn). Afr J Tradit

Complement Altern Med 2008;6(1):62-9.

Florence NT, Benoit MZ, Jonas K, Alexandra T, Désiré DD, Pierre K,

et al. Antidiabetic and antioxidant effects of Annona muricata

(Annonaceae), aqueous extract on streptozotocin-induced diabetic rats.

J Ethnopharmacol 2014;151(2):784-90.

Brindis F, González-Trujano ME, González-Andrade M, AguirreHernández





extract of




potential a-glucosidase


Biomed Res Int


Rout Soumya P, KarDurga M, MohapatraSantosh B, Swain Sharada P.

Anti-hyperglycemic effect Annona reticulata L. Leaves on experimental

diabetic rat model. Asian J Pharm Clin Res 2013;6 Suppl 1:56-60.

Rout SP, Kar DM. Identification of chemical compounds present in

different fractions of Annona reticulata L. leaf by using GC-MS. Nat

Prod Res 2014;28(20):1786-8.

Roy SK, Mishra PK, Nandy S, Datta R, Chakraborty B. Potential

wound healing activity of the different extract of Typhonium trilobatum

in albino rats. Asian Pac J Trop Biomed 2012;S1477-86.

Sachin A, Shreesh KO, Divya V. Characterisation of streptozotocin

induced diabetes mellitus in Swiss albino mice. Glob J Pharmacol


Bhakuni DS, Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN.

Screening of Indian plants for biological activity. II. Indian J Exp Biol


Kar DM, Maharana L, Pattnaik S, Dash GK. Studies on hypoglycaemic

activity of Solanum xanthocarpum Schrad. and Wendl. fruit extract in

rats. J Ethnopharmacol 2006;108(2):251-6.

Ngueguim TF, Dimo T, Dzeufiet DP, Vouffo B, Dongo E, Renaud B,

et al. Antidiabetic activities of methanol-derived extract of

dorsteniapicta twigs in normal and streptozotocin-induced diabetic rats.

Asian J Tradit Med 2007;2(4):140-8.

Deluca HF, Cantorna MT. Vitamin D: Its role and uses in immunology.

FASEB J 2001;15(14):2579-85.

Takiishi T, Gysemans C, Bouillon R, Mathieu C. Vitamin D and

diabetes. Rheum Dis Clin North Am 2012;38(1):179-206.

Griz LH, Bandeira F, Gabbay MA, Dib SA, Carvalho EF. Vitamin D

and diabetes mellitus: An update 2013. Arq Bras Endocrinol Metabol


Ogunlesi M, Okiei W, Osibote EA. Analysis of the essential oil from the

leaves of Sesamum radiatum, a potential medication for male infertility

factor, by gas chromatography - mass spectrometry. Afr J Biotechnol


Astarita G, Di Giacomo B, Gaetani S, Oveisi F, Compton TR, Rivara S,

et al. Pharmacological characterization of hydrolysis-resistant analogs

of oleoylethanolamide with potent anorexiant properties. J Pharmacol

Exp Ther 2006;318(2):563-70.

Cheng MC, Ker YB, Yu TH, Lin LY, Peng RY, Peng CH. Chemical

synthesis of 9(Z)-octadecenamide and its hypolipidemic effect: A

bioactive agent found in the essential oil of mountain celery seeds.

J Agric Food Chem 2010;58(3):1502-8.

Chen C, Jin X, Meng X, Zheng C, Shen Y, Wang Y. Inhibition of TNFainduced







Eur J Pharmacol 2011;660(2-3):305-9.

Voegtlin C, Thompson JW, Dunn ER. Hyperglycemia produced by

glycerol. J Biol Chem 1925;64:639-42.

Nahak G, Sahu RK. In vitro antioxidativeacitivity of Azadirachta

indica and Melia azedarach leaves by DPPH scavenging assay. J Am

Sci 2010;6(6):123-8.

Yao LH, Jiang YM, Shi J, Tomás-Barberán FA, Datta N, Singanusong

R, et al. Flavonoids in food and their health benefits. Plant Foods Hum

Nutr 2004;59(3):113-22.

Tepe B, Sokmen M, Akpulat AH, Sokmen A. In vitro antioxidant

activities of the methanol extracts of four Helichrysum species from

Turkey. Food Chem 2005;90:685-9.

Süzgeç S, Meriçli AH, Houghton PJ, Cubukçu B. Flavonoids of

Helichrysum compactum and their antioxidant and antibacterial

activity. Fitoterapia 2005;76(2):269-72.

Sefi M, Fetoui H, Makni M, Zeghal N. Mitigating effects of antioxidant

properties of Artemisia campestris leaf extract on hyperlipidemia,

advanced glycation end products and oxidative stress in alloxaninduced

diabetic rats. Food Chem Toxicol


Lee KT, Sohn IC, Kim DH, Choi JW, Kwon SH, Park HJ. Hypoglycemic

and hypolipidemic effects of tectorigenin and kaikasaponin III in

the streptozotocin-lnduced diabetic rat and their antioxidant activity

in vitro. Arch Pharm Res 2000;23(5):461-6.

Gandhi GR, Ignacimuthu S, Paulraj MG. Solanum torvum Swartz. Fruit

containing phenolic compounds shows antidiabetic and antioxidant

effects in streptozotocin induced diabetic rats. Food Chem Toxicol


Dewanjee S, Das AK, Sahu R, Gangopadhyay M. Antidiabetic activity

of Diospyros peregrine fruit: Effect on hyperglycemia, hyperlipidemia

and augmented oxidative stress in experimental Type2 diabetes. Food

Chem Toxicol 2009;47(10):2679-85.

Rout SP, Kar DM, Jagadeeshreddy E, Manoj S, Sengottuvel T. In vitro

antioxidant property of fractions of Annona reticulata (l) leave. Int J

Pharm Pharm Sci 2015;7(2):299-303.

Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR. Traditional plant

treatments for diabetes. Studies in normal and streptozotocin diabetic

mice. Diabetologia 1990;33(8):462-4.

Aragno M, Mastrocola R, Catalano MG, Brignardello E, Danni O,

Boccuzzi G. Oxidative stress impairs skeletal muscle repair in diabetic

rats. Diabetes 2004;53(4):1082-8.

Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KN, Salleh MS,

Gurtu S. Glibenclamide or metformin combined with honey improves

glycemic control in streptozotocin-induced diabetic rats. Int J Biol Sci


Lee A, Morley JE. Metformin decreases food consumption and induces

weight loss in subjects with obesity with type II non-insulin-dependent

diabetes. Obes Res 1998;6(1):47-53.

Szkudelski T, Szkudelska K. Streptozotocin induces lipolysis in rat

adipocytes in vitro. Physiol Res 2002;51(3):255-9.

Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Clin

Pract Endocrinol Metab 2009;5(3):150-9.

Del Pilar Solano M, Goldberg RB. Management of diabetic

dyslipidemia. Endocrinol Metab Clin North Am 2005;34(1):1-25.

Keidan B, Hsia J, Katz R. Plasma lipids and antidiabetic agents: A brief

overview. Br J Diabetes Vasc Dis 2002;2:40-3.

Baynes JW. Role of oxidative stress in development of complications in

diabetes. Diabetes 1991;40(4):405-12.

Kakkar R, Mantha SV, Radhi J, Prasad K, Kalra J. Increased oxidative

stress in rat liver and pancreas during progression of streptozotocin-

induced diabetes. Clin Sci (Lond) 1998;94(6):623-32.

Matsuda M, Shimomura I. Increased oxidative stress in obesity:

Implications for metabolic syndrome, diabetes, hypertension,

dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract


Asian J Pharm Clin Res, Vol 9, Suppl. 2, 2016, 256-262

Rout et al.

Otani H. Oxidative stress as pathogenesis of cardiovascular risk

associated with metabolic syndrome. Antioxid Redox Signal


Stephen ND, Daryl KG. Insulin, oral hypoglycemic agents, and the

pharmacology of the endocrine pancreas. In: Goodman Gilman A,

Hardman JG, Limbird LE, editors. Goodman & Gilman’s the

Pharmacological Basis of Therapeutics. 10

ed. New York: The

McGraw-Hill; 2001. p. 1686-92.


Mogensen CE, Steffes MW, Deckert T, Christiansen JS. Functional and

morphological renal manifestations in diabetes mellitus. Diabetologia


Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR; UKPDS

Study Group. Risk factors for renal dysfunction in type 2 diabetes: U.K.

Prospective Diabetes Study 74. Diabetes 2006;55(6):1832-9.

Kiran G, Nandini CD, Ramesh HP, Salimath PV. Progression of early

phase diabetic nephropathy in streptozotocin-induced diabetic rats:

Evaluation of various kidney-related parameters. Indian J Exp Biol


Zafar M, Naeem-Ul-Hassan Naqvi S, Ahmed M, Kaimkhani ZA.

Altered kidney morphology and enzymes in streptozotocin-induced

diabetic rats. Int J Morphol 2009;27(3):783-90.

Tesch GH, Allen TJ. Rodent models of streptozotocin-induced diabetic

nephropathy. Nephrology (Carlton) 2007;12(3):261-6.

Parvizi MR, Parviz M, Tavangar SM, Soltani N, Kadkhodaee M,

Seifi B, et al. Protective effect of magnesium on renal function in STZ-

induced diabetic rats. J Diabetes Metab Disord 2014;13(1):84.

Ha H, Lee HB. Reactive oxygen species as glucose signaling

molecules in mesangial cells cultured under high glucose. Kidney Int

Suppl 2000;77(1):S19-25.

Iglesias-De La Cruz MC, Ruiz-Torres P, Alcamí J, Díez-Marqués L,

Ortega-Velázquez R, Chen S, et al. Hydrogen peroxide increases

extracellular matrix mRNA through TGF-beta in human mesangial

cells. Kidney Int 2001;59(1):87-95.

Rafieian-Kopaei M, Nasri H. The ameliorative effect of Zingiber

officinale in diabetic nephropathy. Iran Red Crescent Med J


Alhaider AA, Korashy HM, Sayed-Ahmed MM, Mobark M, Kfoury H,

Mansour MA. Metformin attenuates streptozotocin-induced diabetic

nephropathy in rats through modulation of oxidative stress genes

expression. Chem Biol Interact 2011;192(3):233-42.

Bruijstens LA, van Luin M, Buscher-Jungerhans PM, Bosch FH.

Reality of severe metformin-induced lactic acidosis in the absence of

chronic renal impairment. Neth J Med 2008;66(5):185-90.

Silvestre J, Carvalho S, Mendes V, Coelho L, Tapadinhas C, Ferreira P,

et al. Metformin-induced lactic acidosis: A case series. J Med Case Rep


Kumar AS, Venkatarathanamma V, Suneeta K, Kumari BS.

Comparative in vitro screening of α-amylase and α-glucosidase

enzyme inhibitory studies in leaves of Annona species. J Pharm Res




How to Cite

Rout, S. p, D. m Kar, and L. Maharana. “ANTI-HYPERGLYCEMIC EFFECT OF DIFFERENT FRACTIONS OF ANNONA RETICULATA LEAF”. Asian Journal of Pharmaceutical and Clinical Research, vol. 9, no. 8, Oct. 2016, pp. 256-62, doi:10.22159/ajpcr.2016.v9s2.13710.



Original Article(s)