• Srinivas Rajesham Bhairy Department of Pharmaceutics, Vivekanand Education Society’s College of Pharmacy
  • Rajashree Shreeram Hirlekar Department of Pharmaceutics, Vivekanand Education Society’s College of Pharmacy


Vaccines represent a useful contribution to the field of biotechnology as they supply protection against various diseases. But, the major obstacle to oral vaccination is the digestion of macromolecule antigenic protein within the stomach due to extremely acidic pH. To address this issue, scientist Arntzen introduced the concept of edible vaccines. Edible vaccines are prepared by using the science of genetic engineering in which the selected genes are introduced into the plants by means of various methods. The transgenic plant is then induced to manufacture the encoded protein which acts as a vaccine. Owing to its low cost, it will be affordable for developing countries like India. Edible vaccines are used to treat various diseases like malaria, measles, hepatitis B, stopping autoimmunity in type-1 diabetes, cholera, enterotoxicogenic E.coli (ETEC), HIV and anthrax. This review comprises mechanism of action, methods of development, candidate plants, applications, clinical trials and patents of edible vaccines.

Keywords: Edible vaccines, Antigens, Oral immunization, Immunity.


1. Charmi PS, Manisha NT, Urmila DV, Vishwash JJ. Edible vaccine:
A better way for immunization. Int J Curr Pharm Res 2011;3:53-6.
2. Morr TS, Gomez LM, Palmer KE. Edible vaccines: A concept comes of
age. Trends Microbiol 1998;6:449-53.
3. Daniell H, Streatfield SJ, Wycoff K. Medical molecular farming:
Production of antibodies, biopharmaceuticals and edible vaccines in
plants. Trends Plant Sci 2001;6(5):219-26.
4. Hafiz E, Eyob H. Review on edible vaccine. Acad J Nutr 2015;4:40-9.
5. Hudu SA, Shinkafi SH, Shuaibu U. An overview of recombinant
vaccine technology, adjuvants and vaccine delivery methods. Int J
Pharm Pharm Sci 2016;8:19-24.
6. Neeraj M, Prem NG, Kapil K, Amit KG, Suresh PV. Edible
vaccines: A new approach to oral immunization. Indian J Biotechnol
7. Streatfield SJ. Plant-based vaccines for animal health. Rev Sci Tech
8. Swamy KT, Reddy NS, Rao S. Green revolution vaccines, edible
vaccines. Afr J Biotechnol 2003;2:679-83.
9. Swarnali D, Rohitas D. Advances in vaccination: A review. Int J App
Pharm 2009;1:1-21.
10. Singh RP, Singh P, Mishra V, Prabakaran D, Vyas SP. Vesicular systems
for non-invasive topical immunization: Rationale and prospects. Indian
J Pharmacol 2002;34:301-10.
11. Goldblatt D, Ramsay M. Immunization in domestic animal. Oxford
Text Book of Medicine. 4
ed. United Kingdom: Oxford University
Press; 2003.
12. Levine MM. Enteric infections and the vaccines to counter them: Future
directions. Natl Med 2006;24(18):3865-73.
13. Yoshida T, Kimura E, Koike S, Nojima J, Futai E, Sasagawa N, et al.
Transgenic rice expressing amyloid ß-peptide for oral immunization.
Int J Biol Sci 2011;7:301-7.
14. Arakawa T, Chong D, Langridge W. Transgenic plants for the
production of edible vaccine and antibodies for immunotherapy. Nat
Biotechnol 1998;16:292-7.
15. Sharma M, Sood B. A banana or a syringe: Journey to edible vaccines.
J Microbiol Biotechnol 2011;27(3):471-7.
16. Akhilesh T, Anjali K. Edible vaccines: Let thy food be thy medicine. Int
J Pharmacol Screen Methods 2014;4:105-8.
17. Lal P, Ramachandran VG, Goyal R, Sharma R. Edible vaccines: Current
status and future. Indian J Med Microbiol 2007;25:93-102.
18. Das DK. Plant derived edible vaccines. Curr Trends Biotechnol Pharm
19. Webster DE, Thomas MC, Strugnell RA, Dry IB, Wesselingh SL.
Appetising solutions: An edible vaccine for measles. Med J Aust
20. Waghulkar, VM. Fruit derived edible vaccines: Natural way for the
vaccination. Int J Pharmtech Res 2010;2:2124-7.
21. Singh BD. Biotechnology. 1
ed. India: Kalyani Publishers; 1998.
22. Madhumita N, Deepak V, Pallavi U. Edible vaccines - A review. Int J
Pharmacother 2014;4:58-61.
23. Krishna C, Jonnala UK, Sri R. Edible vaccines. Sriramachandra J Med
24. Jacob SS, Cherian S, Sumithra TG, Raina OK, Sankar M. Edible
vaccines against veterinary parasitic diseases – Current status and
future prospects. Vaccine 2013;31(15):1879-85.
25. Lossl A, Waheed M. Chloroplast-derived vaccines against human
diseases: Achievements, challenges and scopes. J Plant Biotechnol
2011;9:527-39.26. Swapna LA. Edible vaccines: A new approach for immunization in
plant biotechnology. Sch Acad J Pharm 2013;2:227-32.
27. Streatfield SJ. Mucosal immunization using recombinant plant-based
oral vaccines. Methods 2006;38(2):150-7.
28. Takahashi I, Nochi T, Kunisawa J, Yuki Y, Kiyono H. The mucosal
immune system for secretory IgA responses and mucosal vaccine
development. Inflamm Regen 2010;30:40-7.
29. de Aizpurua HJ, Russell-Jones GJ. Oral vaccination. Identification of
classes of proteins that provoke an immune response upon oral feeding.
J Exp Med 1988;167(2):440-51.
30. Langridge WH. Edible vaccines. Sci Am 2000;283(6):66-71.
31. Franklin CI, Trieu T, Gonazales RA, Dixon RA. Plant regeneration
from seeding explants of green bean (Phaseolus vulgaris L.) via
organogenesis. Plant Cell Tissue Organ Cult 1991;24:199-206.
32. De la Riva GA, Gonzalez-Cabrera J, Vasquez R, Ayra-Pardo C.
Agrobacterium tumefaciens: A natural tool for plant transformation.
Electron J Biotechnol 1998;1:118-32.
33. Lee RW, Strommer J, Hodgins D, Shewen PE, Niu Y. Towards
development of an edible vaccine against bovine pneumatic
pasteurellosis using transgenic white clover expressing a Mannheimia
fusion protein. Infect Immun 2001;69:5786-93.
34. Plantharayil BA. Plant based edible vaccines against poultry diseases:
A review. Adv Anim Vet Sci 2014;2:305-11.
35. Taylor NJ, Fauquet CM. Microparticle bombardment as a tool
in plant science and agricultural biotechnology. DNA Cell Biol
36. Maliga P. Engineering the plastid genome of higher plants. Curr Opin
Plant Biol 2002;5(2):164-72.
37. Ramshaw IA, Ramsay AJ. The prime-boost strategy: Exciting prospects
for improved vaccination. Immunol Today 2000;21(4):163-5.
38. Yoshimatsu K, Kawano N, Kawahara N, Akiyama H, Teshima R,
Nishijima M. Current status in the commercialization and application
of genetically modified plants and their effects on human and livestock
health and phytoremediation. Yakugaku Zasshi 2012;132(5):629-74.
39. Huy NX, Kim SH, Yang MS, Kim TG. Immunogenicity of a neutralizing
epitope from porcine epidemic diarrhea virus: M cell targeting ligand
fusion protein expressed in transgenic rice calli. Plant Cell Rep
40. Wang Y, Shen Q, Jiang Y, Song Y, Fang L, Xiao S, et al. Immunogenicity
of foot-and-mouth disease virus structural polyprotein P1 expressed in
transgenic rice. J Virol Methods 2012;181(1):12-7.
41. Loza-Rubio E, Rojas-Anaya E. Vaccine production in plant
systems – An aid to the control of viral diseases in domestic animals: A
review. Acta Vet Hung 2010;58(4):511-22.
42. Dauvillée D, Delhaye S, Gruyer S, Slomianny C, Moretz SE, d’Hulst C,
et al. Engineering the chloroplast targeted malarial vaccine antigens in
Chlamydomonas starch granules. PLoS One 2010;5(12):e15424.
43. Streatfield SJ, Jilka JM, Hood EE, Turner DD, Bailey MR,
Mayor JM, et al. Plant-based vaccines: Unique advantages. Vaccine
44. William S. A review of the progression of transgenic plants used to
produce plant bodies for human usage. J Young Invest 2002;4:56-61.
45. Renuga G, Tandipani AB, Arur AK. Transgenic banana callus derived
recombinant cholera toxin B subunit as potential vaccine. Int J Curr Sci
46. Hire RK, Abhang DR, Ansari FZ, Gangurde AB. A review on edible
vaccines. Int J Pharm Res Bio Sci 2012;1:133-44.
47. Doshi V, Rawal H, Mukherjee S. Edible vaccines from GM crops.
J Pharm Sci Innov 2013;2:1-6.
48. Rupali RK, Sumit K, Uttam K. Edible vaccine: A prospective substitute
for better immunization in future. Int J Pharm Bio Sci 2012;3:948-55.
49. Tiwari S, Verma PC, Singh PK, Tuli R Plants as bioreactors for the
production of vaccine antigens. Biotechnol Adv 2009;27:449-67.
50. Parvaiz A. Transgenic plants as green factories for vaccine production.
Afr J Biotechnol 2013;12:6147-58.
51. Pant G, Sanjana WK. Edible vaccines: A boon to medical science. Int J
Curr Agric Res 2014;3:76-80.
52. Smith ML, Keegan ME, Mason HS, Shuler ML. Factors important in
the extraction, stability and in vitro assembly of the hepatitis B surface
antigen derived from recombinant plant systems. Biotechnol Prog
53. Castan˜ O´ NS, Martin AJ, Marin MS, Alonso P, Parra F, Ordas R.
The effect of the promoter on expression of vp60 gene from rabbit
hemorrhagic disease virus in potato plants. Plant Sci 2002;162:87-95.
54. Walmsley AM, Arntzen CJ. Plant cell factories and mucosal vaccines.
Curr Opin Biotechnol 2003;14:145-50.
55. Singh A, Singh C. A vaccination approach to develop experimental
model of Malaria via immunization of mice against Plasmodium yoelii
Nigeriensis soluble antigens using qs-21 as adjuvant. Int J Pharm
Pharm Sci 2014;6:333-7.
56. Wang L, Goschnick MW, Coppel RL. Oral immunization with a
combination of Plasmodium yoelii merozoite surface proteins 1 and
4/5 enhances protection against lethal malaria challenge. Infect Immun
57. Ajaz M, Vashisht VK, Rizwan R, Susheel S, Jaskanwal S. Edible vaccinevegetables
as alternative to needles. Int J Curr Res 2011;33:18-26.
58. Huang Z, Dry I, Webster D, Strugnell R, Wesselingh S. Plant-derived
measles virus hemagglutinin protein induces neutralizing antibodies in
mice. Vaccine 2001;19:2163-71.
59. Polack FP, Auwaerter PG, Lee SH, Nousari HC, Valsamakis A,
Leiferman KM, et al. Production of atypical measles in rhesus
macaques: Evidence for disease mediated by immune complex
formation and eosinophils in the presence of fusion-inhibiting antibody.
Nat Med 1999;5:629-34.
60. Giddings G, Allison G, Brooks D, Carter A. Transgenic plants as
factories for biopharmaceuticals. Nat Biotechnol 2000;18:1151-5.
61. Thanavala Y, Yang YF, Lyons P, Mason HS, Arntzen C. Immunogenicity
of transgenic plant-derived hepatitis B surface antigen. Proc Natl Acad
Sci U S A 1995;92(8):3358-61.
62. Richter LJ, Thanavala Y, Arntzen CJ, Mason HS. Production of
hepatitis B surface antigen in transgenic plants for oral immunization.
Nat Biotechnol 2000;18(11):1167-71.
63. Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, et al.
Generation and assembly of secretory antibodies in plants. Science
64. Mason HS, Haq TA, Clements JD, Arntzen CJ. Edible vaccine protects
mice against Escherichia coli heat-labile enterotoxin (LT): potatoes
expressing a synthetic LT-B gene. Vaccine 1998;16(13):1336-43.
65. Lebens M, Johansson S, Osek J, Lindblad M, Holmgren J. Large-scale
production of Vibrio cholerae toxin B subunit for use in oral vaccines.
Biotechnology (N Y). 1993;11(13):1574-8.
66. Richter L, Mason HS, Arntzen CJ. Transgenic plants created for oral
immunization against diarrheal diseases. J Travel Med 1996;3(1):52-56.
67. Tacket CO, Mason HS, Losonsky G, Clements JD, Levine MM,
Arntzen CJ. Immunogenicity in humans of a recombinant bacterial
antigen delivered in a transgenic potato. Nat Med 1998;4(5):607-9.
68. Prakash CS. Edible vaccines and antibody producing plants. Biotechnol
Dev Monitor 1996;27:10-3.
69. Karasev AV, Foulke S, Wellens C, Rich A, Shon KJ, Zwierzynski I,
et al. Plant based HIV-1 vaccine candidate: Tat protein produced in
spinach. Vaccine 2005;23(15):1875-80.
70. Kim TG, Galloway DR, Langridge WH. Synthesis and assembly
of anthrax lethal factor-cholera toxin B-subunit fusion protein in
transgenic potato. Mol Biotechnol 2004;28(3):175-83.
837 Views | 629 Downloads
How to Cite
Bhairy, S. R., and R. S. Hirlekar. “EDIBLE VACCINES: AN ADVANCEMENT IN ORAL IMMUNIZATION”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 10, no. 2, Feb. 2017, pp. 71-77, doi:10.22159/ajpcr.2017.v10i2.15825.
Review Article(s)