Biologically inspired nanoparticle synthesis is currently a rapid expanding area of research in nanotechnology. Nanoparticle synthesis utilizing the
bioresources such as plants and microbes appears to be a viable, low-cost, and eco-friendly approach. Especially mushrooms can be used for largescale
synthesis of silver nanoparticles as mushroom produces many proteins that reduce the silver nitrate during the biosynthesis. Silver nanoparticles
can be characterized using ultraviolet-visible (UV-VIS) spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction, scanning electron
microscopy, energy dispersive X-ray, and transmission electron microscope. Silver nanoparticles possess high antibacterial activity since silver in
different forms has been extensively used as a medicine for curing diseases and promote wound healing. Silver nanoparticles have high surface
specific area, which will lead to excellent antimicrobial activity as compared with bulk metallic silver. Further, the silver nanoparticles show anticancer
activity against various cell lines such as human epidermoid larynx carcinoma (HEP-2), colon adenocarcinoma (HCT-116), breast adenocarcinoma
(MCF-7), liver carcinoma (Hep-G2), and intestinal adenocarcinoma (Caco2) were well documented. This review intends to present green synthesis of
silver nanoparticles and their application as antimicrobial and anticancer agents.
Keywords: Silver nanoparticles, Bioresources, Mushroom, Antimicrobial activity, Anticancer property.


1. Smith AM, Duan H, Rhyner MN, Ruan G, Nie S. A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys Chem Chem Phys 2006;8:3895-903.
2. Fayaz A, Balaji M, Girilal M, Yadav R, Thangavelu P, Venketesan KR. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 2010;6(1):103-9.
3. Jain N, Jain R, Thakur N, Gupta BP, Jain DK, Banveer J, et al. Nanotechnology: A safe and effective drug delivery system. Asian J Pharm Clin Res 2010;3(3):159-65.
4. Dubey SP, Lahtinen M, Sillanpaa M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 2010;45(7):1065-71.
5. Evanoff DD Jr, Chumanov G. Synthesis and optical properties of silver nanoparticles and arrays. Chemphyschem 2005;6(7):1221-31.
6. Mafune F, Kohno JY, Takeda Y, Kondow T, Sawabe H. Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem 2000;104(39):9111-7.
7. Bar H, Bhui DH, Sahoo PG, Sarkar P, De PS, Misra A. Green synthesis of silver nanoparticles using latex of Jatrapha curcas. Colloids Surf A Physicochem Eng Asp 2009;339(1-3):134-9.
8. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian SA. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol Biol Med 2007;3(2):168-71.
9. Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 2008;65:150-3.
10. Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 2008;43:1164-70.
11. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 2009;68(1):88-92.
12. Vivek M, Kumar PS, Steffi S, Sudha S. Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J Med Biotechnol 2011;3(3):143-8.
13. Vanaja M, Annadurai G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci 2013;3(3):217-23.
14. Amin M, Anwar F, Janjua MR, Iqbal MA, Rashid U. Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. Berry extract: Characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int J Mol Sci 2012;13(8):9923-41.
15. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Biological synthesis of triangular gold nanoprisms. Nat Mater 2004;3:482-8.
16. Lathamuthiah B, Devi R. In vivo toxicity studies of biosynthesized silver nanoparticles using Brassica oleraceae in zebra fish model. Int J Pharm Pharm Sci 2014;7(2):425-30.
17. Nomiya K, Yoshizawa A, Tsukagoshi K, Kasuga NC, Hirakawa S, Watanabe J. Synthesis and structural characterization of silver(I), aluminium(III) and cobalt(II) complexes with 4-isopropyltropolone (hinokitiol) showing noteworthy biological activities. Action of silver(I)-oxygen bonding complexes on the antimicrobial activities. J Inorg Biochem 2004;98(1):46-60.
18. Panacek A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizúrova N, et al. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J Phys Chem B 2006;110:16248-53.
19. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005;16:2346-53.
20. Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI. Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Technol 2005;5(2):244-9.
21. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009;27(1):76-83.
22. Mahitha B, Raju BD, Dillip GR, Reddy CM, Mallikarjuna K, Manoj L, et al. Biosynthesis, characterization and antimicrobial studies of AgNPs extract from Bacopa monniera whole plant. Dig J Nanomater Biostruct 2011;6(1):135-42.
23. Tripathi RM, Saxena A, Gupta N, Kapoor H, Singh RP. High antibacterial activity of silver nanoballs against E. coli MTCC 1302, S. typhimurium MTCC 1254, B. subtilis MTCC 1133 and P. aeruginosa MTCC 2295. Dig J Nanomater Biostruct 2010;5(2):323-30.
24. Dibrov P, Dzioba J, Gosink KK, Häse CC. Chemiosmotic mechanism of antimicrobial activity of Ag(?) in Vibrio cholerae. Antimicrob Agents Chemother 2002;46:2668-70.
25. Lara HH, Ayala-Nuaez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 2010;26(4):615-21.
26. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004;275:177-82.
27. Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J. Conduction electron spin resonance of small silver particles. Spectrochim Acta A Mol Biomol Spectrosc 2006;63(1):189-91.
28. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007;3(1):95-101.
29. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 2000;52(4):662-8.
30. Prabhu S, Poulose EK. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2012;2(1):1-10.
31. Yeole MP, Dhole SN, Kulkarni NS. Peptide nanomedicine in cancer treatment. Asian J Pharm Clin Res 2013;6(2):28-32.
32. Preethi R, Padma PR. Anticancer activity of silver nanobio-conjugates synthesized from Piper betle leaves extract and its active compound eugenol. Int J Pharm Pharm Sci 2016;8(9):201-5.
33. Raghunandan D, Ravishankar B, Sharanbasava G, Mahesh DB, Harsoor V, Yalagatti MS, et al. Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol 2011;2(1-6):57-65.
34. Gurunathan S, Lee KJ, Kalimuthu K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomaterials 2009;30(31):6341-50.
35. Martins D, Frungillo L, Anazzetti MC, Melo PS, Durán N. Antitumoral activity of L-ascorbic acid-poly- D, L-(lactide-co-glycolide) nanoparticles containing violacein. Int J Nanomedicine 2010;5:77-85.
36. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009;3(2):279-90.
37. Franco-Molina MA, Mendoza-Gamboa E, Sierra-Rivera CA, Gómez-Flores RA, Zapata-Benavides P, Castillo-Tello P, et al. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J Exp Clin Cancer Res 2010;29:148.
38. Sanpui P, Chattopadhyay A, Ghosh SS. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces 2011;3:218-28.
39. Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ. The apoptotic effect of nanosilver is mediated by a ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 2008;179(3):130-9.
40. Rutberg FG, Dubina MV, Kolikov VA, Moiseenko FV, Ignat’eva EV, Volkov NM, et al. Effect of silver oxide nanoparticles on tumor growth in vivo. Dokl Biochem Biophys 2008;421:191-3.
41. Shawkey AM, Rabeh MA, Abdulall AK, Abdellatif AO. Green nanotechnology: Anticancer activity of silver nanoparticles using Citrullus colocynthis aqueous extracts. Adv Life Sci Technol 2013;13:60-70.
42. Sriram MI, Kanth SB, Kalishwaralal K, Gurunathan S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomedicine 2010;5:753-62.
634 Views | 1447 Downloads
How to Cite
KC, P., and M. PU. “ANTIMICROBIAL AND ANTICANCER ACTIVITY OF SILVER NANOPARTICLES FROM EDIBLE MUSHROOM: A REVIEW”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 10, no. 3, Mar. 2017, pp. 37-40, doi:10.22159/ajpcr.2017.v10i3.16027.
Review Article(s)