RECENT ADVANCES IN APPLICATIONS OF ACTIVE CONSTITUENTS OF SELECTED MEDICINAL PLANTS OF DHOFAR, SULTANATE OF OMAN

Authors

  • Israr Ul Hassan College of Engineering, Dhofar University, PO Box 2509, PC 211, Salalah, Sultanate of Oman.
  • Mohammed Idrees Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PO Box 2509, PC 211, Salalah, Sultanate of Oman.
  • Gowhar Ahmad Naikoo Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PO Box 2509, PC 211, Salalah, Sultanate of Oman.
  • Luay Rashan Frankincense and Biodiversity, Laboratory, Dhofar University, PO Box 2509, PC 211, Salalah, Sultanate of Oman.
  • Abdelbary Elhissi College of Pharmacy, Qatar University, PO Box 2713,Doha, Qatar.
  • William Zimmerle University of Pennsylvania, Museum of Archaeology and Anthropology, Consulting Scholar-Near East Section, Philadelphia, PA 19104 USA.
  • Waqar Ahmed School of Mathematics and Physics, College of Science, University of Lincoln, Lincoln, LN6 7TS, United Kingdom.

DOI:

https://doi.org/10.22159/ajpcr.2018.v11i4.16386

Keywords:

Dhofar, Secondary metabolites, Frankincense, Active constituents

Abstract

 The Dhofar region of Oman is extremely opulent in plant biodiversity in comparison to other parts of the country. Most of the cultivated, medicinal and wild plants of the region are available in the mountainous side and hilly areas of Dhofar. The plants produce products from primary metabolism and others from secondary metabolism. On the basis of active constituents plants can be categorized into two groups:

1. Medicinal plants and

2. Aromatic plants.

Over 250 complex chemicals have been recognized and extracted from herbal sources. In this review article, we discuss a selection of medicinal plants of the Dhofar region of Oman which are rich in active constituents and through recent reports discuss the application of the most active constituents. Among the medicinal plants of the Dhofar region, frankincense is also a well-known indicator of the region and has a unique position through its medicinal properties of its oil and gum resin.

Downloads

Download data is not yet available.

References

Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 2001;109:69-75.

Edith A, Mofolusho F, Omonike O, Larry A. In vivo antimalarial and cytotoxic properties of Annona senegalenisis extract. Agric J Tradit Complement Act Med 2005;3:138-9.

Thompson RC. A Dictionary of Ancient Botany. London: ???; 1949.

Siddiqui MM, Afaq SH, Asif M. Chemical Standardization of ‘Kundur’ (Oleo-Gum-Resin of Boswellia serrate Roxb). Ancient Sci Life IV 1984;1:48-50.

Sultana A, Rahman KU, Padmaja AR, Rahman SU. Boswellia serrata Roxb. A traditional herb with versatile pharmacological activity: A review. Int J Pharm Sci Res 2013;4:2107.

Miller A, Morris M. Plants of Dhofar: The Southern Region of Oman: Traditional, Economic, and Medicinal Uses. Oman: Office of the Advisor for Conservation of the Environment, Diwan of the Royal Court, Sultanate of Oman; 1988.

Afsharypuor S, Rahmany M. Essential oil constituents of two african olibanums available in Isfahan commercial market. Iran J Pharmacol Sci 2005;1:167-70.

Michie CA, Cooper E. Frankincense and myrrh as remedies in children. J R Soc Med 1991;84:602-5.

Maloney GA. Gold, frankincense, and myrrh: An introduction to Eastern Christian spirituality. New York: Crossroads Pub. Co.; 1997.

El-Sherbini GT, El Gozamy BR, Abdel-Hady NM, Morsy TA. Efficacy of two plant extracts against Vaginal trichomoniasis. J Egypt Soc Parasitol 2009;39:47-58.

Van Vuuren SF, Kamatou GP, Viljoen AM. Volatile composition and antimicrobial activity of twenty commercial frankincense essential oil samples. S Afr J Bot 2010;76:686-91.

Walsh ME, Reis D, Jones T. Integrating complementary and alternative medicine: Use of myrrh in wound management. J Vasc Nurs 2010;28:102.

Wanner J, Schmidt E, Bail S, Jirovetz L, Buchbauer G, Gochev V, et al. Chemical composition and antibacterial activity of selected essential oils and some of their main compounds. Nat Prod Commun 2010;5:1359-64.

Jarić S, Mitrovi´ M, Djurdjević L, Kostić O, Gajić G, Pavlović D, et al. Phytotherapy in medieval Serbian medicine according to the pharmacological manuscripts of the chilander medical codex (15-16th centuries). J Ethnopharmacol 2011;137:601-19.

Yousef JM. Identifying frankincense impact by biochemical analysis and histological examination on rats. Saudi J Biol Sci 2011;18:189-94.

Ammon HP. Boswellic acids in chronic inflammatory diseases. Planta Med 2006;72:1100-16.

Al-Harrasi A, Al-Saidi S. Phytochemical analysis of the essential oil from botanically certified oleogum resin of Boswellia sacra (Omni Luban). Molecules 2008;13:2181-9.

Ayoola GA, Coker HA, Adesegun SA, Adepoju-Bello AA, Obaweya K, Ezennia EC, et al. Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in South Western Nigeria. Trop J Pharm Res 2008;7:1019-24.

Kumar A, Ilavarasn R, Jayachandran T, Decaraman M, Aravindhan P, Padmanaban N, et al. Phytochemical investigation on a tropical plant. Pak J Nutr 2009;8:83-5.

Marinova D, Ribarova F, Atanasoval M. Total phenolics and flavonoids in Bulgarians vegetables. J Univ Chem Technol Met 2005;40:255-9.

Sreevidya N, Mehrotra S. Spectrophotometric method for estimation of alkaloids precipitates with Dragendorff’s reagent in plant materials. J AOAC Int 2003;86:1124-7.

Okwu DE, Josiah C. Evaluation of the chemical composition of two Nigerian medicinal plants. Afr J Biotech 2006;5:357-61.

Hamidpour R, Soheila H, Mohsen H, Roxanna H. Frankincense (Boswellia species): The novel phytotherapy for drug targeting in cancer. Arch Cancer Res 2016;4:46-8.

Rijkers T, Ogbazghi W, Wessel M, Bongers F. The effect of tapping for frankincense on sexual reproduction in Boswellia papyrifera. J Appl Ecol 2006;43:1188-95.

Siddiqul MZ. Boswellia serrata, a potential antiinflammatory agent: An overview. Indian J Pharm Sci 2011;73:255-61.

Kindeya GH. Ecology and Management of Boswellia papyrifera (Del.) Hochst. Dry Forest in Tigray, Northern Ethiopia (Ph.D. Thesis). Gottingen, Germany: Culvillier; 2003.

Moussaieff A, Mechoulam R. Boswellia resin: From religious ceremonies to medical uses; a review of in-vitro, in-vivo and clinical trials. J Pharm Pharmacol 2009;61:1281-93.

Ota M, Houghton P. Boswellic Acid with Acetylcholinesterase Inhibitory Properties from Frankincense†53rd Annual Congress Organized by Society of Medicinal Plants, Societa Italiana di Fitochimica Florence; 2005. p. 339.

Notermans S, Hoogenboom-Verdegal A. Existing and emerging foodborne diseases. Int J Food Microbiol 1992;15:197-305.

Souza EL, Lima EO, Freire KR, Sousa CP. Inhibitory action of some essential oils and phytochemicals on the growth of moulds isolated from foods. Braz Arch Biol Technol Curitiba 2005;2:245-50.

Camarda LT, Vita D, Rosa P, Domenico S. Chemical composition and antimicrobial activity of some oleogum resin essential oils from Boswellia spp. (Burseraceae). Annal Chim 2007;97:837-44.

Ali A, Wurster M, Arnold N, Teichert A, Schmidt J. Chemical composition and biological activities of essential oils from the oleogum resins of three endemic soqotraen Boswellia species. Rec Nat Prod 2008;2:6-12.

Khosravi S, Mahmoodian H, Moghadamnia A. The effect of Frankincense in the treatment of moderate plaque induced gingivitis: A double blinded randomized clinical trial. Daru 2011;19:288-94.

Kavanaugh NL, Katharina R. Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl Environ Microbiol 2012;78:4057-61.

de Rapper S, Van Vuuren SF, Kamatou GP, Viljoen AM, Dagne E. The additive and synergistic antimicrobial effects of select frankincense and myrrh oils - a combination from the pharaonic pharmacopoeia. Lett Appl Microbiol 2012;54:352-8.

Estrada AC, Syrovets T, Pitterle K, Lunov O, Buchele B, Schimana-Pfeifer J, et al. Tirucallic acids are novel pleckstrin homology domain-dependent Akt inhibitors inducing apoptosis in prostate cancer cells. Mol Pharmacol 2010;77:378-87.

Tatiana S, Büchele B, Gedig E, Slupsky JR, Simmet T. Acetyl-boswellic acids are novel catalytic inhibitors of human topoisomerases I and Iiα. Mol Pharmacol 2000;58:71-81.

Hoernlein RF, Orlikowsky TH, Zehrer C, Niethammer D, Sailer ER, Simmet TH, et al. Acetyl-11-keto-β-boswellic acid induces apoptosis in HL-60 and CCRF-CEM cells and inhibits topoisomerase I. J Pharmacol Exp Ther 1999;288:613-9.

Tatiana S, Büchele B, Krauss C, Laumonnier Y, Simmet T. Acetyl-boswellic acids inhibit lipopolysaccharide-mediated TNF-α induction in monocytes by direct interaction with IκB kinases. J Immunol 2005a;174:498-506.

Bone K. Boswellia and brain inflammation. Mediherb US e-Monitor 2011;37:1-2.

Zugmaier BB, Simmet T. Analysis of pentacyclic triterpenic acids from frankincense gum resins and related phytopharmaceuticals by high-performance liquid chromatography. Identification of lupeolic acid, a novel pentacyclic triterpene. J Chromatogr B 2003;791:21-30.

Sterk V, Büchele B, Simmet T. Effect of food intake on the bioavailability of boswellic acids from a herbal preparation in healthy volunteers. Planta Med 2004;70:1155-60.

Tatiana S, Gschwend JE, Büchele B, Laumonnier Y, Zugmaier W, Genze F, et al. Inhibition of IκB kinase activity by acetyl-boswellic acids promotes apoptosis in androgen-independent PC-3 prostate cancer cells in vitro and in vivo. J Biol Chem 2005b;280:6170-80.

Büchele B, Zugmaier W, Estrada A, Genze F, Syrovets T, Paetz C, et al. Characterization of 3α-acetyl-11-keto-α-boswellic acid, a pentacyclic triterpenoid inducing apoptosis in vitro and in vivo. Planta Med 2006;72:1285-9.

Veena K, Shanthi P, Sachdanandam P. The biochemical alterations following administration of kalpaamruthaa and Semecarpus anacardium in mammary carcinoma. Chem Biol Interact 2006;161:69-78.

Khan KH, Roles of Emblica officinalis in medicine-a review. Bot Res Int 2009;2:218-28.

Zhang LZ, Zhao WH, Guo YJ, Tu GZ, Lin S, Xin LG. Studies on chemical constituents in fruits of Tibetan medicine Phyllanthus emblica. Zhongguo Zhong Yao Za Zhi 2003;28:940-3.

Habib-ur-Rehman, Yasin KA, Choudhary MA, Haque R, Bin-Hafeez B, Ahmad I, et al. Studies on the chemical constituents of Phyllanthus emblica. Nat Prod Res 2007;21:775-81.

El-Desouky SK, Ryu SY, Kim YK. A new cytotoxic acylated apigenin glucoside from Phyllanthus emblica L. Nat Prod Res 2008;22:91-5.

Nosál’ová G, Mokrý J, Hassan KM. Antitussive activity of the fruit extract of Emblica officinalis Gaertn (Euphorbiaceae). Phytomedicine 2003;10:583-9.

Sancheti G, Jindal A, Kumari R, Goyal PK. Chemopreventive action of Emblica officinalis on skin carcinogenesis in mice. Asian Pac J Cancer Prev 2005;6:197-201.

Akinyele BO, Odiyi AC. Comparative study of the vegetative morphology of the existing taxonomic status of Aloe vera. J Plant Sci 2007;2:558-63.

Park YI, Jo TH. Perspective of industrial application of Aloe vera. In: Park YI, Lee SK, editos. New Perspective on Aloe. New York, USA: Springer Verlag; 2006. p. 191-200.

Dennis P, Zhu YF. Evaluation of Aloe vera gel gloves in dry skin associated with occupational exposure. Am J Infect Control 2003;31:40- 2.

Suleyman A, Sema A. Investigation of in vitro antimicrobial activity of Aloe vera juice. J Anim Vet Adv 2009;8:99-102.

Tan BK, Vanitha J. Immunomodulatory and antimicrobial effects of some traditional Chinese medicinal herbs. Curr Med Chem 2004;11:1423-30.

Johnson M, Renisheya JM, Nancy BS, Laju RS, Aruriya G, Renola JT. Antimicrobial and antifungal activity of Aloe vera Gel extract. J Int Biomed Res 2012;3:184-7.

Stanle MC, Obeagu EI, Okwandu GE. Antimicrobial effects of Aloe vera on some human pathogens. Int J Curr Microbiol Appl Sci 2014;3:1022-8.

Ferro VA, Bradlbury F, Cameron P, Shakir E, Rahman SR, Stimson WH. In vitro suscepitibilities of Shigella flexneri and Streptococcus pyogenes to inner gel of Aloe barbadensis Miller. Antimicrob Chem Mar 2003;47:1137-9.

Gracia-Sosa K, Villarreal-Alvarez N, Lubben P, Pena-Rodriguez LM. Chrysophanol, an antimicrobial anthraquinone from the root extract of Colubrina gregii. J Mex Chem Soc 2006;50:76-8.

Dabai YU, Muhammad S, Aliya BS. Antibacterial activity of anthraquinone fraction of Vilten doniana. Pak J Biol Sci 2007;14:1-3.

Wu YW, Ouyang J, Xiao XH, Gao YW, Liu Y. Antimicrobial properties and toxicity of anthraquinones by microcalorimetric bioassay. Chinese J Chem 2006;24:45-50.

Shamim S, Ahmed SW, Azhar I. Antifungal activity of Allium, Aloe and Solanum species. Pharm Biol 2004;42:491-8.

Pugh N, Ross SA, Elsohly MA, Pasco DS. Characterisation of aloeride, a new high molecular weight polysaccharide from Aloe vera with potent immunostimulatory activity. J Agric Food Chem 2001;49:1030 4.

Bajwa R, Shafique S. Apprasial of antifungal activity of Aloe vera. Mycopath 2007;5:5-9.

Coopoosamy RM, Magwa ML. Traditional use, antibacterial activity and antifungal activity of crude extract of Aloe excelsa. Afr J Biotech 2007;6:2406-10.

Cock IE. Antimicrobial activity of Aloe barbadensis Miller leaf gel components. Int J Microbiol 2008;4:1937-49.

Lee JK, Lee MK, Yun YP, Kim Y, Kim JK, Kim YS, et al. Acemannan purified from Aloe vera induces phenotypic and functional maturation of immature dendritic cells. Int Immunopharmacology 2001;1:1275-84.

Arunkumar S, Muthuselvam M. Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathgens. World J Agric Sci 2009;5:572-6.

Zaveri M, Khandhar A, Patel S, Patel A. Chemistry and pharmacology of Piper longum L. Int J Pharm Sci Rev Res 2010;5:67-76.

Dodson CD, Dyer LA, Searcy J, Wright Z, Letourneau DK. Cenocladamide, a diydropyridone alkaloid from Piper cenocladum. Phytochemistry 2000;53:51-4.

Hussain A, Naz S, Nazir H, Shinwari ZK. Tissue culture of Black pepper (Piper nigrum L) in Pakistan. Pak J Bot 2011;43:1069-78.

Joshi SG. Medicinal Plants: Family Apiaceae. 1st ed. Delhi: Oxford and IBH Publishing Co. Pvt. Ltd.; 2000.

Bettaieb I, Bourgou S, Wannes WA, Hamrouni I, Limam F, Marzouk B. Essential oils, phenolics and antioxidant activities of different parts of cumin (Cuminum cyminum L.). J Agric Food Chem 2010;58:10410-8.

De Martino L, De Feo V, Fratianni F, Nazzaro F. Chemistry, antioxidant, antibacterial and antifungal activities of volatile oils and their components. Nat Prod Comm 2009;4:1741-50.

El-Ghorab AH, Nauman M, Anjum FM, Hussain S, Nadeem M. A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J Agric Food Chem 2010;58:8231-3.

Yetim H, Sagdic O, Ozturk I. Fatty acid composition of cold press oils of seven edible plant seeds grown in Turkey. Chem Nat Compd 2008;44:634-6.

Ngo-Duy C, Destaillats F, Keskitalo M, Arul J, Angers P. Triacylglerols of Apiaceaae seed oils: Composition and regiodistribution of fatty acids. Eur J Lipid Sci Technol 2009;111:164-9.

Zaman U, Abbasi A. Isolation, purification and characterization of a nonspecific lipid transfer protein from Cuminum cyminum. Phytochemistry 2009;70:979-87.

El-Sawi SA, Mohamed MA. Cumin herb as a new source of essential oils and its response to foliar spray with some micro-nutrients. Food Chem 2002;77:75-80.

Al-Bataina BA, Maslat AO, Al-Kofahil MM. Element analysis and biological studies on ten oriental spices using XRF and Ames test. J Trace Elem Med Biol 2003;17:85-90.

Maiga A, Diallo D, Bye R, Paulsen BS. Determination of some toxic and essential metal ions in medicinal and edible plants from Mali. J Agric Food Chem 2005;53:2316-21.

Milan KS, Dholakia H, Tiku PK, Vishveshwaraiah P. Enhancement of digestive enzymatic activity by cumin (Cuminum cymonum L.) and role of spent cumin as a bionutrient. Food Chem 2008;110:678-83.

Gachkar L, Yadegari D, Rezaei MB, Taghizadeh M, Astaneh SA, Rasooli I. Chemical and biological characteristics of Cuminum cyminum and Rosemarinus officinalis essential oils. Food Chem 2007;102:898 904.

Hajlaoui H, Mighri H, Noumi E, Snoussi M, Trabelsi N, Ksouri R, et al. Chemical composition and biological activities of Tunisian Cuminum cyminum L. essential oil: A high effectiveness against Vibrio spp. strains. Food Chem Toxicol 2010;48:2186-92.

Dorman HJ, Deans SG. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J Appl Microbiol 2000;88:308-16.

Burt S. Essential oils: Their antibacterial properties and potential applications in foods: A review. Int J Food Microbiol 2004;94:223-53.

Mehdi RA, Masoomch SG, Mohammad BR, Kamkar J, Soheil A, Reza S, et al. Chemical composition and antiaflatoxicogenic activity of Carum carvi L., Thymus vulgaris and Citrus aurantifolia essential oils. Food Contr 2009;20:1018-24.

Boyraz N, Ozcan M. Antifungal effect of some spice hydrosols. Fitoterapia 2005;76:661-5.

Nalini N, Sabitha K, Vishwanathan P, Menon VP. Influence of spices on the bacterial (enzyme) activity in experimental colon cancer. J Ethnopharmacol 1998;62:15-24.

Nalini N, Manju V, Menon VP. Effect of spices on lipid metabolism in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. J Med Food 2006;9:237-45.

Soniya M, Kuberan T, Anitha S, Sankareswari P. In vitro antibacterial activity of plant extracts against Gram positive and Gram negative pathogenic bacteria. Int J Microbiol Immunol Res 2013;2:1-5.

Keskin D, Toroglu S. Studies on antimicrobial activities of solvent extracts of different spices. J Environ Biol 2011;32:251-6.

Ouattara B, Simard RE, Holley RA, Piette GJ, Begin A. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int J Food Microbiol 1997;37:155-62.

Shetty RS, Singhal RS, Kulkarni PR. Antimicrobial properties of cumin. World J Poult Biotechnol 1994;10:232-3.

Tanira MO, Ali BH, Bashir AK, Dhanasekaran S, Tibirica E, Alves L. Mechanism of the hypotensive action of Rhazya stricta in rats. Pharmacol Res 2000;41:369-87.

Baeshen NA, Sahira AL, Huda AA, Ayman IE. Biochemical evaluation of the effect of Rhazya stricta aqueous leaves extract in liver and kidney functions in Rats. Nat Sci 2010;8:136-42.

Ali BH, Al-Qarawi H, Mousa HM, Bashir AK. Concentration of amino acids in brains of mice treated with the traditional medicinal plant Rhazya stricta. Dence. Indian J Pharmacol 2000;32:253-4.

Ahmad H, Ghulam RB, Latif A. Medicinal flora of the thar desert-an overview of problems and their feasible solutions. Zonas Ãridas 2004;8:1-11.

Shahat AA, Alsaid MS, Kotob SE, Husseiny HA, Al-Ghamdi AA, Ahmed HH. Biochemical and histological evidences for the antitumor potential of Teucrium oliverianum and Rhazya stricta check for this species in other resources in chemically-induced hepatocellular carcinoma. Afr J Tradit Complement Altern Med 2016;13:62-70.

El-Awady MA, Awad NS, El-Tarras AE. Evaluation of the anticancer activities of pomegranate (Punica granatum) and harmal (Rhazya stricta) plants grown in Saudi arabia. Int J Curr Microbiol Appl Sci 2015;4:1158-67.

Badreldin H, Ali A, Al-Qarawi K, Ahmed O, Bashir MT. Photochemistry, pharmacology and toxicity of Rhazya stricta Decne: A review. Photother Res 2000;14:229-34.

Szabó FL. Rigorous biogenetic network for a group of indole alkaloids derived from strictosidine. Molecules 2008;13:1875-96.

Khan S, Khan GM. In vitro antifngal activity of Rhazya stricta. Pak J Pharm Sci 2007;20:279-84.

Baeshin NA, Twaty N, Al-Hebshi A. Evaluation the genotoxicity of Rhazya stricta leves extract by the Saccharomyces cerevisiae auxotrophic mutats test. Egypt J Nat Toxicol 2005;2:87-100.

Baeshin NA, Qari SH, Sabir JS, ALhejin AM. Biochemical and molecular evaluation of genetic effects of Rhazya stricta (Decne) leafs extract on Aspergillus terreus. Saudi J Biol Sci 2008;15:25-33.

Ansah C, Khan A, Gooderham NJ. In vitro genotoxicity of the West African anti-malarial herbal Cryptolepis sanguinolenta and its major alkaloid cryptolepine. Toxicology 2005;208:141-7.

Burt SA, Reinders RD. Antimicrobial activity of selected plant essential oils against Escherichia coli O157:H7. Lett Appl Microbiol 2003;36:162-7.

Adam SE, Al-Yahya MA, Al-Farhan AH. Toxicity of Nerium oleander and Rhazya stricta in Najdi sheep: Hematologic and clinicopathologic alterations. Am J Chin Med 2002;30:255-62.

Singhal A, Kumar VL. Effect of aqueous suspension of dried latex of Calotropis procera on hepatorenal function in rat. J Ethnopharmacol 2009;122:172-4.

Wititsuwannakul D, Chareonthiphakorn N, Pace M, Wititsuwannakul R. Polyphenol oxidases from latex of Hevea brasiliensis: Purification and characterization. Phytochemistry 2002;61:115-21.

Dubey VK, Jagannadham MV. Procerain a stable cysteine protease from the latex of Calotropis procera. Phytochemistry 2003;62:1057- 71.

Yelne MB, Sharma PC, Dennis TJ. Database on Medicinal Plants Used in Ayurveda. New Delhi: Central Council for Research in Ayurveda and Siddha; 2000. p. 69-73.

Kumar VL, Arya S. Medicinal uses and pharmacological properties of Calotropis procera. Recent Prog Med Plants 2006;11:373-88.

Rashan LJ, Katrin F, Myint MK, Gerhard K, Heinz HF, Joachim N, et al. Characterization of the anticancer properties of monoglycosidic cardenolides isolated from Nerium oleander and Streptocaulon tomentosum. J Ethnopharmacol 2011;134:781-8.

Samvatsar S, Diwanji VB. Plant sources for the treatment of jaundice in the tribals of Western Madhya Pradesh of India. J Ethnopharmacol 2000;73:313-6.

Hasan MQ. DNA-RAPD Fingerprinting and cytogenetic screening of genotoxic and antigenotoxic effects of aqueous extracts of Costus speciosus (Koen.) JKAU Sci 2010;22:133-52.

Parrotta JA. Healing Plants of Peninsular India. UK: AB International Wallingford; 2001. p. 944.

Shittu BO, Popoola TO, Taiwo O. Potentials of Calotropis procera leaves for Wastewater treatment. In: Proceedings of the International Conference on Science and National Development held at University of Agriculture, Abeokuta; 2004. p. 97-101.

Kareem SO, Akpan I, Ojo OP. Antimicrobial activities of Calotropis procera on selected pathogenic microorganisms. Afr J Biomed Res 2008;11:105-10.

De Freitas CD, Fábio CS, Ilka MV, Tadeu AO, Gilberto BD, Márcio VR. Osmotin purified from the latex of Calotropis procera: Biochemical characterization, biological activity and role in plant defense. Plant Physiol Biochem 2011;49:738-43.

Khare CP. Encyclopedia of Indian Medicinal Plants. Heidelberg: Springer-Verlag; 2004. p. 328-30.

Hseini S, Kahouadji A. Étude ethnobotanique de la flore médicinale dans la région de Rabat (Maroc occidental). Lazaroa 2007;28:79-93.

Siham L, Saida O, Moha T, Nadia S, Amraoui H. Chemical analysis and antioxidant activity of Nerium oleander†leaves. Online J Biol Sci 2014;14:1-7.

Adisakwattana S, Sompong W, Meeprom A, Ngamukote S, Yibchok-Anun S. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation. Int J Mol Sci 2012;13:1778-89.

Mohadjerani M. Antioxidant activity and total phenolic content of Nerium oleander L. Grown in North of Iran. Iran J Pharm Res 2012;11:1121-6.

Smith JA, Madden T, Vijjeswarapu M, Newman RA. Inhibition of export of fibroblast growth factor-2 (FGF-2) from the prostate cancer cell lines PC3 and DU145 by Anvirzel and its cardiac glycoside component, oleandrin. Biochem Pharmacol 2001;62:469-72.

Erdemoglu N, Kupeli E, YeÅŸilada E. Antiinflammatory and antinociceptive activity assessment of plants used as remedy in Turkish folk medicine. J Ethnopharmacol 2003;89:123-29.

Rout SK, Kar DM, Rout B. Study of cns activity of leaf extracts of Nerium oleander in experimental animal models. Int J Pharm Pharm Sci 2012;4:378-82.

Kotian SR, Pai KS, Nayak JK, Bangera H, Prasad K, Bhat KM. Biomechanical, biochemical and histological evidences for wound healing properties of indian traditional medicines. Int J Pharm Pharm Sci 2015;7:163-71.

Published

01-04-2018

How to Cite

Hassan, I. U., M. Idrees, G. Ahmad Naikoo, L. Rashan, A. Elhissi, W. Zimmerle, and W. Ahmed. “RECENT ADVANCES IN APPLICATIONS OF ACTIVE CONSTITUENTS OF SELECTED MEDICINAL PLANTS OF DHOFAR, SULTANATE OF OMAN”. Asian Journal of Pharmaceutical and Clinical Research, vol. 11, no. 4, Apr. 2018, pp. 28-37, doi:10.22159/ajpcr.2018.v11i4.16386.

Issue

Section

Review Article(s)