NEUROPROTECTIVE POTENTIAL OF AZADIRACHTA INDICA LEAVES IN DIABETIC RATS

  • Naveen Kumar Gupta
  • Nidhi Srivastva
  • Sanjeev Puri
  • PARVESH BUBBER
  • Veena Puri

Abstract

Objective: Azadirachta indica is a treasure of multiple pharmacological properties and presently leaves of this plant have been explored to evaluate the neuroprotective potential in diabetic rats.

Methods: Male Sprague-Dawley rats were injected with single intra peritoneal dose of streptozotocin (60mg/ Kg body weight (BW.) to develop animal model of diabetes. Post twenty one days of streptozotocin induction, animals were treated with aqueous Azadirachta indica Leaf Extract (ALE, 600mg/Kg BW.) for seven consecutive days. Followed this, all animals were evaluated for the levels of blood glucose, lipid peroxidation (LPO), C Reactive Proteins (CRP), pro oxidant biomarkers and histological changes.

Results: Streptozotocin treated rats exhibited elevated levels of blood glucose, LPO, CRP and altered pro oxidant biomarkers in comparison to control rats. Additionally, histological alterations/damage was evidenced as fragmentation, vacuolization, inflammation etc. However, ALE treatment to these rats significantly decreased blood glucose levels, LPO, CRP levels and restored pro-oxidants status. Light microscopic and ultra microscopic analysis also indicated less damage, tissue architectural changes in comparison to untreated diabetic rats. Further decrease in hyperalgesia and inflammation levels; along with protective and restorative changes following ALE treatment suggested the neuroprotective potential of Azadirachta indica leaves in diabetic rats.

Conclusion: The oral administration of ALE to streptozotocin induced diabetic animals resulted in neuro-protection against degenerative oxidative stress associated with metabolic and histopathological damage in the brain.

Key words:  Azadirachta indica, Antioxidants, Hyperalgesia, Neuroprotection

 

 

References

1. Yadav SK, Nagori BP, Desai PK. Pharmacological characterization of different fractions of Calotropis procera (Asclepiadaceae) in streptozotocin induced experimental model of diabetic neuropathy. J Ethnopharmacol 2014;152(2):349-57.
2. Deli G, Bosnyak E, Pusch G, Komoly S, Feher G. Diabetic neuropathies: Diagnosis and management. Neuroendocrinology 2014;98(4):267-80.
3. Gupta A, Gupta Y. Diabetic neuropathy: Part. J Pak Med Assoc 2014;64:714-21.
4. Pandhare RB, Sangameswaran B, Mohite PB, Khanage SG. Attenuating effect of seeds of Adenanthera pavonina aqueous extract in neuropathic pain in streptozotocin-induced diabetic rats: An evidence of neuroprotective effects. Rev Bras Farmacogn 2012;22(2):428-35.
5. Prabhakar PK. Pathophysiology of secondary complications of diabetes mellitus. Asian J Pharm Clin Res 2016;9(1):32-6.
6. Pandey RK, Singh SN, Shahnawaz K. Comparative study of aegle marmelos, Azadirachta indica and glimepride on blood sugar in experimentally induced hyperglycemia in albino rats. J Evol Med Dent Sci 2015;4:3815-22.
7. Yang H, Fan S, Song D, Wang Z, Ma S, Li S, et al. Long-term streptozotocin-induced diabetes in rats leads to severe damage of brain blood vessels and neurons via enhanced oxidative stress. Mol Med Rep 2013;7(2):431-40.
8. Vojtková J, Čiljaková M, Bánovčin P. Diabetic microangiopathy etiopathogenesis, new possibilities in diagnostics and management in Microangiopathy. In: Microangiopathy. 1st ed. Europe, Rijeka, Croatia: In Tech; 2012. p. 37-66.
9. Hama AT, Plum AW, Sagen J. Antinociceptive effect of ambroxol in rats with neuropathic spinal cord injury pain. Pharmacol Biochem Behav 2010;97(1):249-55.
10. Zenker J, Ziegler D, Chrast R. Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci 2013;36(8):439-49.
11. Dong Q, Wright JR. Expression of C-reactive protein by alveolar macrophages. J Immunol 1996;156(12):4815-20.
12. Sreenivasan V, Kandasamy CS, Kumar MG, Prabhu KG, Arulraj P, Johnson JS, et al. Review on different natural herbals associated with the anti-diabetic activity. World J Pharm Pharmsci 2015;4(8):581-95.
13. World Health Organization. WHO traditional medicine strategy 2002-2005 glucose metabolism to neurodegeneration. J Diabetes Res 2003;4:303-12.
14. Nduka SO, Daniel AL, Ilodigwe EE, Adimorah U, Mbagwu SI. Pharmacodynamic herb-drug interactions: The effects of Azadirachta indica leaf extracts on two commonly used second generation sulfonylureas. World J Pharm Pharm Sci 2015;4(7):1702-11.
15. Raphael E. Phytochemical constituents of some leaves extract of Aloe vera and Azadirachta indica plant species. Glob Adv Res J Environ Sci Toxicol 2012;1(2):14-7.
16. Pandey G, Verma KK, Singh M. Evaluation of phytochemical, antibacterial and free radical scavenging properties of Azadirachta indica (neem) leaves. Int J Pharm Pharm Sci 2014;6(2):444-7.
17. Hussein HE. Reversal of diabetic retinopathy in streptozotocin induced diabetic rats using traditional Indian anti-diabetic plant, Azadirachta indica (L.). Indian J Clin Biochem 2002;17(2):115-23.
18. Gupta NK, Srivastva N, Bubber P, Puri S. The Antioxidant prtential of Azadirachta indica ameliorates cardioprotection following diabetic mellitus induced microangiopathy. Pharmacogn Mag 2016;12(3):371-8.19. Verma VK, Sarwa KK, Zaman KM. Antihyperglycemic activity of Swertia chirayita and Andrographis paniculata plant extracts in streptozotocin induced diabetic rats. Int J Pharm Pharm Sci 2013;5(3):305-11.
20. Luck H. Catalase. In: Bergmeyer HU, editor. Methods of Enzymatic Analysis. 2nd ed. Weinheim, New York: Verlag Chemie and Academic Press; 1963. p. 885-8.
21. Carlberg IN, Mannervik BE. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 1975;250(14):5475-80.
22. Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol 1984;105:114-21.
23. Kono Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 1978;186(1):189-95.
24. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959;82(1):70-7.
25. Wills ED. Mechanisms of lipid peroxide formation in animal tissues. Biochem J 1966;99(3):667-76.
26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193(1):265-75.
27. Woolfe G, MacDonald AD. The evaluation of the analgesic action of pethidine hydrochloride (demerol). J Pharmacol Exp Ther 1944;80(3):300-7.
28. Ben-Bassat J, Peretz E, Sulman FG. Analgesimetry and ranking of analgesic drugs by the receptacle method. Arch Int Pharmacodyn Ther 1959;122:434-47.
29. Sima AA, Zhang WX, Tze WJ, Tai J, Nathaniel V. Diabetic neuropathy in STZ-induced diabetic rat and effect of allogeneic islet cell transplantation: Morphometric analysis. Diabetes 1988;37(8):1129-36.
30. Hussein JI, El-Matty D, El-Khayat ZA, Abdel-Latif YA. Brain neurotransmitters in diabetic rats treated with CO enzyme Q10. Int J Pharm Pharm Sci 2012;4:554-6.
31. Inzucchi SE, Sherwin RS. Type 1 diabetes mellitus. Cecil Medicine. 24th ed. Philadelphia, PA: Saunders, Elsevier; 2011. p. 78-81.
32. Chattopadhyay RR. Possible mechanism of antihyperglycemic effect of Azadirachta indica leaf extract. Part IV. Gen Pharmacol 1996;27(3):431-4.
33. Gupta R, Bajpai KG, Johri S, Saxena AM. An overview of Indian novel traditional medicinal plants with antidiabetic potentials. Afr J Trad Complement Altern Med 2008;5(1):1-17.
34. Chatterjea MN, Shinde R. Textbook of Medical Biochemistry. 8th ed. New Delhi: Jaypee Brothers Medical Publishers; 2011. p. 380-5.
35. Roy S, Mondru AK, Dontamalla SK, Vaddepalli RP, Sannigrahi S, Veerareddy PR. Methoxy VO-salen stimulates pancreatic β cell survival by upregulation of eNOS and downregulation of apoptosis in STZ-induced diabetic rats. Biol Trace Elem Res 2011;144(1-3):1095-11.
36. Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A. Neuroinflammation and oxidative stress in diabetic neuropathy: Futuristic strategies based on these targets. Int J Endocrinol 2014;2014:1-10.
37. Hashmat I, Azad H, Ahmed A. Neem (Azadirachta indica A. Juss) - A nature’s drugstore: An overview. Int Res J Biol Sci 2012;1(1):76-9.
38. Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 2011;51(7):1302-19.
39. Hassler SN, Johnson KM, Hulsebosch CE. Reactive oxygen species and lipid peroxidation inhibitors reduce mechanical sensitivity in a chronic neuropathic pain model of spinal cord injury in rats. J Neurochem 2014;131(4):413-7.
40. Kuhad A, Chopra K. Tocotrienol attenuates oxidative-nitrosative stress and inflammatory cascade in experimental model of diabetic neuropathy. Neuropharmacology 2009;57(4):456-62.
41. Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and β-cell loss in Type 1 diabetes. Nat Rev Endocrinol 2009;5(4):219-26.
42. Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop Type 2 diabetes results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003;52(3):812-7.
43. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: The link between insulin resistance, obesity and diabetes. Trends Immunol 2004;25(1):4-7.
44. Mahmoud MF, Hassan NA, El Bassossy HM, Fahmy A. Quercetin protects against diabetes-induced exaggerated vasoconstriction in rats: Effect on low grade inflammation. PloS One 2013;8(5):e63784.
45. Schumacher M, Cerella C, Reuter S, Dicato M, Diederich M. Anti-inflammatory, pro-apoptotic, and anti-proliferative effects of a methanolic neem (Azadirachta indica) leaf extract are mediated via modulation of the nuclear factor-κB pathway. Genes Nutr 2011;6(2):149-60.
46. Bharati S, Rishi P, Koul A. Azadirachta indica exhibits chemopreventive action against hepatic cancer: Studies on associated histopathological and ultrastructural changes. Microsc Res Tech 2012;75(5):586-95.
47. Mishra J, Dash AK, Dash DK. Nature’s drug store: The free tree of India. World J Pharm Pharm Sci 2013;2(6):4778-98.
48. Sharma S, Kulkarni SK, Agrewala JN, Chopra K. Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pharmacol 2006;536(3):256-61.
49. Ohsawa M, Kamei J. Possible involvement of spinal protein kinase C in thermal allodynia and hyperalgesia in diabetic mice. Eur J Pharmacol 1999;372(3):221-8.
50. Lee-Kubli CA, Mixcoatl-Zecuatl T, Jolivalt CG, Calcutt NA. Animal models of diabetes-induced neuropathic pain. Behavioral Neurobiology of Chronic Pain. Berlin, Heidelberg: Springer; 2014. p. 147-70.
51. Zychowska M, Rojewska E, Przewlocka B, Mika J. Mechanisms and pharmacology of diabetic neuropathy-experimental and clinical studies. Pharmacol Rep 2013;65(6):1601-10.
52. Janes K, Neumann WL, Salvemini D. Anti-superoxide and anti-peroxynitrite strategies in pain suppression. Biochim Biophys Acta 2012;1822(5):815-21.
53. Hidmark A, Fleming T, Vittas S, Mendler M, Deshpande D, Groener JB, et al. A new paradigm to understand and treat diabetic neuropathy. Exp Clin Endocrinol Diabetes 2014;122(4):201-7.
54. Skundric DS, Lisak RP. Role of neuropoietic cytokines in development and progression of diabetic polyneuropathy: From glucose metabolism to neurodegeneration. J Diabesity Res 2003;4(4):303-12.
Statistics
446 Views | 246 Downloads
Citatons
How to Cite
Gupta, N. K., N. Srivastva, S. Puri, P. BUBBER, and V. Puri. “NEUROPROTECTIVE POTENTIAL OF AZADIRACHTA INDICA LEAVES IN DIABETIC RATS”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 10, no. 4, Apr. 2017, pp. 243-8, doi:10.22159/ajpcr.2017.v10i4.16657.
Section
Original Article(s)