REVIEW ON IMAGE AND VIDEO COMPRESSION STANDARDS

Authors

  • Madhavee Latha P School of Electronics Engineering, VIT University, Chennai, Tamil Nadu, India
  • Annis Fathima A School of Electronics Engineering, VIT University, Chennai, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ajpcr.2017.v10s1.19760

Keywords:

Image compression, Discrete cosine transform, Discrete wavelet transform, Video compression

Abstract

Nowadays, the number of photos taken each day is growing exponentially on phones and the number of photos uploading on Internet is also increasing rapidly. This explosion of photos in Internet and personal devices such as phones posed a challenge to the effective storage and transmission.Multimedia files are the files having text, images, audio, video, and animations, which are large and require lots of hard disk space. Hence, these files take more time to move from one place to another place over the Internet. Image compression is an effective way to reduce the storage space and speedup the transmission. Data compression is used everywhere on the internet, that is, the videos, the images, and the music in online. Even though many different image compression schemes exist, current needs and applications require fast compression algorithms which produce acceptable quality images or video with minimum size. In this paper, image and video compression standards are discussed.

Downloads

Download data is not yet available.

References

Wallace GK. The JPEG still picture compression standard. IEEE Trans Consum Electron 1992;38(1):xviii-xxxiv.

Christopoulos C, Skodras A, Ebrahimi T. The JPEG2000 still image coding system: An overview. IEEE Trans Consum Electron 2000; 46(4):1103-27.

Available from: https://www.en.wikipedia.org/wiki/TIFF.

Available from: https://www.en.wikipedia.org/wiki/Portable_Network_ Graphics.

Aguilera P. Comparison of Different Image Compression Formats. Wisconsin College of Engineering, ECE 533; 2006.

Available from: https://www.en.wikipedia.org/wiki/H.120.

Available from: https://www.en.wikipedia.org/wiki/H.261.

Available from: https://www.en.wikipedia.org/wiki/H.263.

Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A. Overview of the H. 264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 2003;13(7):560-76.

Sullivan GJ, Ohm JR, Han WJ, Wiegand T. Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 2012;22(12):1649-68.

Qian D, Chang CI. Linear mixture analysis-based compression for hyperspectral image analysis. IEEE Trans Geosci Remote Sens 2004;42(4):875-91.

Hou X, Liu G, Zou Y. SAR image data compression using wavelet packet transform and universal-trellis coded quantization. IEEE Trans Geosci Remote Sens 2004;42(11):2632-41.

Christophe E, Mailhes C, Duhamel P. Hyperspectral image compression: Adapting SPIHT and EZW to anisotropic 3-D wavelet coding. IEEE Trans Image Process 2008;17(12):2334-46.

Lv X, Wang ZJ. Compressed binary image hashes based on semisupervised spectral embedding. IEEE Trans Inf Forensics Secur 2013;8(11):1838-49.

Xu M, Li S, Lu J, Zhu W. Compressibility constrained sparse representation with learnt dictionary for low bit-rate image compression. IEEE Trans Circuits Syst Video Technol 2014;24(10):1743-57.

Hussain AJ, Al-Jumeily D, Radi N, Lisboa PJ. Hybrid neural network predictive-wavelet image compression system. Neurocomputing 2015;151:975-84.

Abo-Zahhad M, Gharieb RR, Ahmed SM, Abd-Ellah MK. Huffman image comression incorporating DPCM and DWT. J Signal Inf Process 2015;6:123-35.

Aulakh NK, Kaur Y. Increasing image compression rate using (DWT+DCT) and steganography. Int J Emerg Res Manage Technol 2015;4(5)253-60.

Zhou X, Bai Y, Wang C. Image compression based on discrete cosine transform and multistage vector quantization. Int J Multimed Ubiquitous Eng 2015;10(6):347-56.

Shi C, Zhang J, Zhang Y. Content-based onboard compression for remote sensing images. Neurocomputing 2016;191:330-40.

Paek S, Chang SF. Video-server retrieval scheduling and resource reservation for variable bit rate scalable video. IEEE Trans Circuits Syst Video Technol 2000;10(3):460-74.

Shimizu S, Kitahara M, Kimata H, Kamikura K, Yashima Y. View scalable multiview video coding using 3-D warping with depth map. IEEE Trans Circuits Syst Video Technol 2007;17(11):1485-95.

Liu L, Li Z, Delp EJ. Efficient and low-complexity surveillance video compression using backward-channel aware Wyner-Ziv video coding. IEEE Trans Circuits Syst Video Technol 2009;19(4):453-65.

Kannangara CS, Philp JM, Richardson IE, Bystrom M, de Frutos Lopez M. A syntax for defining, communicating, and implementing video decoder function and structure. IEEE Trans Circuits Syst Video Technol 2010;20(9):1176-86.

Liu S, Lai P, Tian D, Chen CW. New depth coding techniques with utilization of corresponding video. IEEE Trans Broadcast 2011;57(2):551-61.

Wu H, Sun X, Yang J, Zeng W, Wu F. Lossless compression of JPEG coded photo collections. IEEE Trans Image Process 2016;25(6):2684-96.

Published

01-04-2017

How to Cite

P, M. L., and A. F. A. “REVIEW ON IMAGE AND VIDEO COMPRESSION STANDARDS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 10, no. 13, Apr. 2017, pp. 373-7, doi:10.22159/ajpcr.2017.v10s1.19760.

Issue

Section

Original Article(s)