OPTIMIZATION, ISOLATION AND CHARACTERIZATION OF BIOACTIVE COMPOUNDS FROM STREPTOMYCES LAVENDULOCOLOR VHB-9

  • Hima Bindu Bssn Department of Botany and Microbiology, Acharya Nagarjuna University, Guntur - 522 510, Andhra Pradesh, India.
  • Rajesh Kumar Munaganti Department of Botany and Microbiology, Acharya Nagarjuna University, Guntur - 522 510, Andhra Pradesh, India.
  • Vijayalakshmi Muvva Department of Botany and Microbiology, Acharya Nagarjuna University, Guntur - 522 510, Andhra Pradesh, India.
  • Krishna Naragani Department of Botany and Microbiology, Acharya Nagarjuna University, Guntur - 522 510, Andhra Pradesh, India.
  • Mani Deepa Indupalli Department of Botany and Microbiology, Acharya Nagarjuna University, Guntur - 522 510, Andhra Pradesh, India.

Abstract

Objectives: Optimization, isolation, and characterization of bioactive compounds from Streptomyces lavendulocolor VHB-9 isolated from granite mines of Mudigonda village of Khammam district of Telangana state.

Methods: The potent strain was identified as S. lavendulocolor VHB-9 by polyphasic taxonomy. The influence of culture conditions on growth and bioactive compounds production was investigated. Purification of bioactive compounds was done using column chromatography. The structures of the compounds were elucidated on the basis of spectroscopic analysis including Fourier transform infrared, electron spray ionization mass spectrophotometry,1H nuclear magnetic resonance (NMR), and13C NMR. The antimicrobial activity of the compounds produced by the strain was tested against both Gram-positive and Gram-negative bacteria and fungi in terms of minimum inhibitory concentration.

Results: Isolation and identification of two compounds, namely (2R, 3R)-2, 3-Butanediol (B1A), and nonadecanoic acid (B1B). Fraction B4 was isolated partially purified fraction and identified by the gas chromatography-mass spectrometry analysis. B1B compound exhibited the highest activity against Bacillus megaterium, Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Candida albicans when compared to B1A and B4 compounds.

Keywords: Granite mine, Streptomyces lavendulocolor, Optimization, Spectroscopy, Gas chromatography-mass spectrometry analysis, Biological assay.

References

1. Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot 2009;62:5-16.
2. de Lima Procópio RE, Da Silva IR, Martins MK, De Azevedo JL, De Araújo JM. Antibiotics produced by Streptomyces. Braz J Infect Dis 2012;16:466-71.
3. Levy SB, Marshall B. Antibacterial resistance worldwide: Causes, challenges andresponses. Nat Med 2004;10:122-9.
4. Nathwani D. Tigecycline: Clinical evidence and formulary positioning. Int J Antimicrob Agents 2005;25:185-92.
5. Alanis AJ. Resistance to antibiotics: Are we in the post-antibiotic era? Arch Med Res 2005;36:697-705.
6. Livermore DM. Bacterial resistance: origins, epidemiology and impact. Clin Infect Dis 2003;36:11-23.
7. Miyadoh S. Research on antibiotic screening in Japan over the last decade: A producing microorganisms approach. Actinomycetologica 1993;9:100-6.
8. Munaganti RK, Naragani K, Muvva V. Antimicrobial profile of Rhodococcus erythropolis VL-RK_05 isolated from Mango Orchards. Int J Pharm Sci Res 2015;6:1805-12.
9. Srinivasan MC, Laxman RS, Deshpande MV. Physiology and nutritional aspects of actinomycetes: An overview. World J Microbiol Biotechnol 1991;7:171-84.
10. Saurav K, Kannabiran K. Diversity and optimization of process parameters for the growth of Streptomyces VITSVK 9 sp. Isolation from Bay of Bengal. India J Nat Environ Sci 2010;1:56-65.
11. Elliah P, Srinivasulu B, Adinarayana K. Optimization studies on neomycin production by a mutant strain of Streptomyces marinensis in solid state fermentation process. Biochemistry 2000;39:529-34.
12. Kathiresan K, Balagurunathan R, Selvam MM. Fungicidal activity of marine actinomycetes against phytopathogenic fungi. Ind J Biotechnol 2005;4:271-6.
13. Farid MA, El-Enshasy HE, Ei-Diwany AI, El-sayed EA. Optimization of the cultivation medium for Natamycin production by Streptomyces netalensis. J Basic Microbiol 2000;40:157-66.
14. Konda S, Raparthi S, Bhaskar K, Munaganti RK, Guguloth V, Nagarapu L, et al. Synthesis and antimicrobial activity of novel benzoxazine sulfonamide derivatives. Bioorg Med Chem Lett 2015;25:1643-6.
15. Naragani K, Mangamuri U, Muvva V, Poda S, Munaganti RK. Antimicrobial potential of Streptomyces cheonanensis VUK-A from mangrove origin. Int J Pharm Pharm Sci 2016;8:53-7.
16. Boussada O, Ammar A, Saidana D, Chriaa J, Chraif I, Dami M, et al. Chemical composition and antimicrobial activity of volatile components from capituila and aerial parts of Rhaponticum acaule DC growing wildin Tunisia. Microbial Res 2008;163:87-95.
17. Bindhu BS, Muvva VL, Munaganti RK, Naragani K, Konda S, Dorigondla KR. A study on production of antimicrobial metabolites by Streptomyces lavendulocolor VHB-9 isolated from Granite soils. Braz Arch Biol Technol 2016;60:1-13.
18. Munaganti RK, Muvva VL, Konda S, Naragani K, Mangamuri UK, Dorigandla KR, et al. Antimicrobial profile of Arthrobacter kerguelensis VL-RK_09. Braz J Microbiol 2016;47:1030-8.
19. Otani T, Yamawaki Y, Matsumoto H, Minami Y, Yamada Y, Marunaka T, et al. New antibiotics. 4181-A and B from Streptomyces griseus: Taxonomy, fermentation, isolation and characterization. J Antibiot 1988;3:275-81.
20. Sujatha P, Bapiraju KV, Ramana T. Studies on a new marine streptomycete BT-408 producing polyketide antibiotic SBR-22 effective against methicillin resistant Staphylococcus aureus. Microbiol Res 2005;160:119-26.
21. Kavitha A, Vijayalakshmi M. Production of amylases by Streptomyces tendae TK-VL_333. Int J Cur Res 2010;10:110-4.
22. Kavitha A, Vijayalakshmi M. Cultural parameters affecting the production of bioactive metabolites by Nocardia levis MK-VL-113. J Appl Sci Res 2009;5:2138-47.
23. Anupama M, Narayana KJ, Vijayalakshmi M. Screening of Streptomyces purpeofuscus for antimicrobial metabolites. Res J Microbiol 2007;4:1-3.
24. Narayana KJP, Vijayalakshmi M. Production of extracelluar α-amylase by Streptomyces albidoflavus. Asian J Biochem 2008;3:194-7.
25. Harindran J, Gupte TE, Naik SR. HA-1-92, a new antifungal antibiotic produced by Streptomyces CDRIL-312: Fermentation, isolation, purification and biological activity. World J Microbiol Biotechnol 1999;15:425-30.
26. Parag SS, Rekha SS. Optimization of nutrional requirements and feeding strategies for Clavulanic acid production by Streptomyces clavuligerus. Biores Technol 2007;98:2010-7.
27. Thakur D, Bora TC, Bordoloi GN, Mazumdar S. Influence of nutrition andculturing conditions for optimum growth and antimicrobial metabolite production by Streptomyces sp. 201. J Med Mycol 2009;19:161-7.
28. Battacharyya BK, Pal SC, Sen SK. Antibiotic production by Streptomyces hygroscopicus. D1.5: Cultural effect. Rev Microbiol 1998;29:49-52.
29. Atta HM, Bayoumi R, El-Sehrawi M, Aboshady A, Al-Huminay A. Biotechnological application for producing some antimicrobial agents byactinomycetes isolates from Al-Khurmah governorate. Eur J Appl Sci 2010;2:98-107.
30. Kumar S, Krishnan K. Bioactivity guided extraction of 5-(2,4-dimethylbenzyl)pyrrolidin-2-one from marine Streptomyces VITSVK5 spp. and its anti- Aspergillus activity against drug resistant clinical isolates. Pharm Lett 2013;5:178-84.
31. Indupalli MD, Vijayalakshmi M, Kumar MR. Streptomyces cellulosae VJDS-1, a promising source for potential bioactive compounds. Int J Pharm Pharm Sci 2015;7:57-61.
32. Naragani K, Kumar MR, Kiranmayi MU, Vijayalakshmi M. Optimization of culture conditions for enhanced antimicrobial activity of Rhodococcus erythropolisVLK-12 isolated from South Coast of Andhra Pradesh, India. Brit Microbiol Res J 2014;4:63-79.
33. Gesheva V, Ivanova V, Gesheva R. Effect of nutrients on the production of AK-111-81 macrolide antibiotic by Streptomyces hygroscopicus. Microbiol Res 2005;160:243-8.
34. Konstantinovic SS, Veljkovic VB, Savic DS, et al. The impact of different carbon and nitrogen sources on antibiotic production by Streptomyces hygroscopicus CH-7. Cur Res Tech Edu Top Appl Microbiol Microb Biotechn 2010;2:1337-42.
35. Chattopadhyay D, Sen SK. Optimization of cultural conditions for antifungal antibiotic accumulation by Streptomyces rochei G164. Hindustan. Antibiot Bull 1997;39:64-71.
36. Han WC, Lee JY, Park DH, Lim CK, Hwang BK. Isolation and antifungal and antioomycete activity of Streptomyces scabie strain PK-a41, the causal agent of common scab disease. Plant Pathol J 2004;20:115-26.
37. Kannan RR, Iniyan AM, Vincent SG. Production of a compound against methicillin resistant Staphylococcus aureus (MRSA) from Streptomyces rubrolavendulae ICN3 and its evaluation in zebrafish embryos. Indian J Med Res 2014;139:913-20.
38. Ripa FA, Nikkon F, Zaman S, Khondkar P. Optimal conditions for antimicrobial metabolites production from a new Streptomyces sp. RUPA-08PR isolated from Bangladeshi soil. Microbiology 2009;37:211-4.
39. Kiranmayi MU, Sudhakar P, Vijayalakshmi M. Production and optimization of L-asparaginase by an actinobacterium isolated from Nizampatnam mangrove ecosystem. J Environ Biol 2014;35:799-805.
Statistics
125 Views | 309 Downloads
Citatons
How to Cite
Bssn, H. B., R. K. Munaganti, V. Muvva, K. Naragani, and M. D. Indupalli. “OPTIMIZATION, ISOLATION AND CHARACTERIZATION OF BIOACTIVE COMPOUNDS FROM STREPTOMYCES LAVENDULOCOLOR VHB-9”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 11, no. 8, Aug. 2018, pp. 361-8, doi:10.22159/ajpcr.2018.v11i8.25345.
Section
Original Article(s)