REVIEW ON TRANSDERMAL MICRONEEDLE-BASED DRUG DELIVERY

Authors

  • Valsa Remony Manoj Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R and D Institute of Science and Technology, Chennai, Tamil Nadu, India.
  • Hima Manoj Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R and D Institute of Science and Technology, Chennai, Tamil Nadu, India.

DOI:

https://doi.org/10.22159/ajpcr.2019.v12i1.27434

Keywords:

Microneedles, Transdermal patches, Insulin, Drug delivery

Abstract

Drug delivery research extensively studies methods to transport proteins, deoxyribonucleic acid (DNA), genes, antibodies, and vaccines efficiently and safely to human bodies in recent years. This review comprehensively covers the developments in microneedle-based drug delivery, their configurations, design, fabrication, and operation. The factors surrounding the mechanical strength of microneedle-based transdermal patches (MNTP's) have also been reviewed. MNTP's can eliminate limitations of conventional drug delivery systems. Microneedle-based transdermal delivery approach will offer a self-management, patient-friendly, and efficient administration route for drug delivery.

Downloads

Download data is not yet available.

Author Biographies

Valsa Remony Manoj, Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R and D Institute of Science and Technology, Chennai, Tamil Nadu, India.

DEPARTMENT OF BIOTECHNOLOGY

HEAD INCHARGE

Hima Manoj, Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R and D Institute of Science and Technology, Chennai, Tamil Nadu, India.

Reaearch fellow

Biomedical Engineering

 

References

Singh R, Singh S, Lillard JW Jr. Past, present, and future technologies for oral delivery of therapeutic proteins. J Pharm Sci 2008;97:2497 523.

Nir Y, Paz A, Sabo E, Potasman I. Fear of injections in young adults: Prevalence and associations. Am J Trop Med Hyg 2003;68:341-4.

Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 2008;26:1261-8.

Finnin BC, Morgan TM. Transdermal penetration enhancers: Applications, limitations, and potential. J Pharm Sci 1999;88:955-8.

Donnelly RF, Raj Singh TR, Woolfson AD. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv 2010;17:187-207.

Sivamani RK, Stoeber B, Wu GC, Zhai H, Liepmann D, Maibach H, et al. Clinical microneedle injection of methyl nicotinate: Stratum corneum penetration. Skin Res Technol 2005;11:152-6.

Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012;64:1547-68.

van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release 2012;161:645-55.

Choi CK, Kim JB, Jang EH, Youn YN, Ryu WH. Curved biodegradable microneedles for vascular drug delivery. Small 2012;8:2483-8.

Moon SJ, Lee SS. A novel fabrication method of a microneedle array using inclined deep x-ray exposure. J Micromech Microeng 2005;15:903.

Yoon YK, Park JH, Allen MG. Multidirectional UV lithography for complex 3-D MEMS structures. Microelectromech Syst J 2006;15:1121-30.

Kolli CS, Banga AK. Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res 2008;25:104-13.

Han M, Lee W, Lee SK, Lee SS. 3D microfabrication with inclined/ rotated UV lithography. Sens Actuators A Phys 2004;111:14-20.

SugiyamaS, Khumpuang S, Kawaguchi G. Plain-pattern to cross-section transfer (PCT) technique for deep x-ray lithography and applications. J Micromech Microeng 2004;14:1399.

Lee KS, Kim RH, Yang DY, Park SH. Advances in 3D nano/ microfabrication using two-photon initiated polymerization. Prog Polym Sci 2008;33:631-81.

Han M, Hyun DH, Park HH, Lee SS, Kim CH, Kim C. A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer. J Micromech Microeng 2007;17:1184.

Park JH, Choi SO, Seo S, Choy YB, Prausnitz MR. A microneedle roller for transdermal drug delivery. Eur J Pharm Biopharm 2010;76:282-9.

Choi SO, Kim YC, Park JH, Hutcheson J, Gill HS, Yoon YK, et al. An electrically active microneedle array for electroporation. Biomed Microdevices 2010;12:263-73.

Ameri M, Fan SC, Maa YF. Parathyroid hormone PTH(1-34) formulation that enables uniform coating on a novel transdermal microprojection delivery system. Pharm Res 2010;27:303-13.

Christodoulou KN, Kistler SF, Schunk PR. Advances in computational methods for free-surface flows. In: Liquid Film Coating. Netherlands: Springer; 1997. p. 297-366.

Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release 2007;117:227-37.

DeMuth PC, Su X, Samuel RE, Hammond PT, Irvine DJ. Nano-layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Adv Mater 2010;22:4851-6.

Han M, Kim DK, Kang SH, Yoon HR, Kim BY, Lee SS, et al. Improvement in antigen-delivery using fabrication of a grooves-embedded microneedle array. Sens Actuators B Chem 2009;137:274 80.

Gill HS, Prausnitz MR. Pocketed microneedles for drug delivery to the skin. J Phys Chem Solids 2008;69:1537-41.

Raphael AP, Prow TW, Crichton ML, Chen X, Fernando GJ, Kendall MA, et al. Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays. Small 2010;6:1785 93.

Ito Y, Hagiwara E, Saeki A, Sugioka N, Takada K. Sustained-release self-dissolving micropiles for percutaneous absorption of insulin in mice. J Drug Target 2007;15:323-6.

Sullivan SP, Murthy N, Prausnitz MR. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater 2008;20:933-8.

Park JH, Allen MG, Prausnitz MR. Polymer microneedles for controlled-release drug delivery. Pharm Res 2006;23:1008-19.

You X, Chang JH, Ju BK, Pak JJ. Rapidly dissolving fibroin microneedles for transdermal drug delivery. Mater Sci Eng: C 2011;31:1632-6.

Park JH, Choi SO, Kamath R, Yoon YK, Allen MG, Prausnitz MR, et al. Polymer particle-based micromolding to fabricate novel microstructures. Biomed Microdevices 2007;9:223-34.

Fukushima K, Ise A, Morita H, Hasegawa R, Ito Y, Sugioka N, et al. Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharm Res 2011;28:7-21.

Chu LY, Choi SO, Prausnitz MR. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs. J Pharm Sci 2010;99:4228-38.

Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008;29:2113-24.

Sullivan SP, Koutsonanos DG, Del Pilar Martin M, Lee JW, Zarnitsyn V, Choi SO, et al. Dissolving polymer microneedle patches for influenza vaccination. Nat Med 2010;16:915-20.

Chu LY, Prausnitz MR. Separable arrowhead microneedles. J Control Release 2011;149:242-9.

Wonglertnirant N, Todo H, Opanasopit P, Ngawhirunpat T, Sugibayashi K. Macromolecular delivery into skin using a hollow microneedle. Biol Pharm Bull 2010;33:1988-93.

Davis SP, Martanto W, Allen MG, Prausnitz MR. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng 2005;52:909-15.

Burton SA, Ng CY, Simmers R, Moeckly C, Brandwein D, Gilbert T, et al. Rapid intradermal delivery of liquid formulations using a hollow microstructured array. Pharm Res 2011;28:31-40.

Clements CJ, Larsen G, Jodar L. Technologies that make administration of vaccines safer. Vaccine 2004;22:2054-8.

Gill HS, Prausnitz MR. Does needle size matter? J Diabetes Sci Technol 2007;1:725-9.

Hogan ME, Kikuta A, Taddio A. A systematic review of measures for reducing injection pain during adult immunization. Vaccine 2010;28:1514-21.

Vicente-Pérez EM, Quinn HL, McAlister E, O’Neill S, Hanna LA, Barry JG, et al. The use of a pressure-indicating sensor film to provide feedback upon hydrogel-forming microneedle array self-application in vivo. Pharm Res 2016;33:3072-80.

Birchall JC, Clemo R, Anstey A, John DN. Microneedles in clinical practice – an exploratory study into the opinions of healthcare professionals and the public. Pharm Res 2011;28:95-106.

Mikolajewska P, Donnelly RF, Garland MJ, Morrow DI, Singh TR, Iani V, et al. Microneedle pre-treatment of human skin improves 5-aminolevulininc acid (ALA)- and 5-aminolevulinic acid methyl ester (MAL)-induced ppIX production for topical photodynamic therapy without increase in pain or erythema. Pharm Res 2010;27:2213-20.

Ding Z, Verbaan FJ, Bivas-Benita M, Bungener L, Huckriede A, van den Berg DJ, et al. Microneedle arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice. J Control Release 2009;136:71-8.

Wermeling DP, Banks SL, Hudson DA, Gill HS, Gupta J, Prausnitz MR, et al. Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proc Natl Acad Sci U S A 2008;105:2058-63.

Brogden NK, Banks SL, Crofford LJ, Stinchcomb AL. Diclofenac enables unprecedented week-long microneedle-enhanced delivery of a skin impermeable medication in humans. Pharm Res 2013;30:1947 55.

Haj-Ahmad R, Khan H, Arshad MS, Rasekh M, Hussain A, Walsh S, et al. Microneedle coating techniques for transdermal drug delivery. Pharmaceutics 2015;7:486-502.

Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release 2007;117:227-37.

Edens C, Collins ML, Goodson JL, Rota PA, Prausnitz MR. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine 2015;33:4712-8.

DeMuth PC, Li AV, Abbink P, Liu J, Li H, Stanley KA, et al. Vaccine delivery with microneedle skin patches in nonhuman primates. Nat Biotechnol 2013;31:1082-5.

Kommareddy S, Baudner BC, Oh S, Kwon SY, Singh M, O’Hagan DT, et al. Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens. J Pharm Sci 2012;101:1021-7.

Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008;29:2113-24.

Donnelly RF, Singh TR, Garland MJ, Migalska K, Majithiya R, McCrudden CM, et al. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Funct Mater 2012;22:4879 90.

Singh TR, Dunne NJ, Cunningham E, Donnelly RF. Review of patents on microneedle applicators. Recent Pat Drug Deliv Formul 2011;5:11 23.

Davis SP, Landis BJ, Adams ZH, Allen MG, Prausnitz MR. Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force. J Biomech 2004;37:1155-63.

Ita K. Reflections on the insertion and fracture forces of microneedles. Curr Drug Deliv 2017;14:357-63.

Crichton ML, Ansaldo A, Chen X, Prow TW, Fernando GJ, Kendall MA, et al. The effect of strain rate on the precision of penetration of short densely-packed microprojection array patches coated with vaccine. Biomaterials 2010;31:4562-72.

Yan G, Warner KS, Zhang J, Sharma S, Gale BK. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int J Pharm 2010;391:7-12.

Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human volunteers. Clin J Pain 2008;24:585-94.

Haq MI, Smith E, John DN, Kalavala M, Edwards C, Anstey A, et al. Clinical administration of microneedles: Skin puncture, pain and sensation. Biomed Microdevices 2009;11:35-47.

Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. Conf Proc IEEE Eng Med Biol Soc 2004;4:2654-7.

Lutton RE, Moore J, Larrañeta E, Ligett S, Woolfson AD, Donnelly RF, et al. Microneedle characterisation: The need for universal acceptance criteria and GMP specifications when moving towards commercialisation. Drug Deliv Transl Res 2015;5:313-31.

Raphael AP, Crichton ML, Falconer RJ, Meliga S, Chen X, Fernando GJ, et al. Formulations for microprojection/microneedle vaccine delivery: Structure, strength and release profiles. J Control Release 2016;225:40-52.

Mistilis MJ, Bommarius AS, Prausnitz MR. Development of a thermostable microneedle patch for influenza vaccination. J Pharm Sci 2015;104:740-9.

Lee JW, Han MR, Park JH. Polymer microneedles for transdermal drug delivery. J Drug Target 2012; DOI: 10.3109/1061186X.2012.741136.

Tibbitt MW, Dahlman JE, Langer R. Emerging frontiers in drug delivery. J Am Chem Soc 2016;138:704-17.

Weiser JR, Saltzman WM. Controlled release for local delivery of drugs: Barriers and models. J Control Release 2014;190:664-73.

Rejinold NS, Shin JH, Seok HY, Kim YC. Biomedical applications of microneedles in therapeutics: Recent advancements and implications in drug delivery. Expert Opin Drug Deliv 2016;13:109-31. Prausnitz MR. Engineering microneedle patches for vaccination and drug delivery to skin. Annu Rev Chem Biomol Eng 2017;8:177-200.

Quinn HL, Kearney MC, Courtenay AJ, McCrudden MT, Donnelly RF. The role of microneedles for drug and vaccine delivery. Expert Opin Drug Deliv 2014;11:1769-80.

Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012;64:1547-68.

van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release 2012;161:645-55.

Daddona PE, Matriano JA, Mandema J, Maa YF. Parathyroid hormone (1-34)-coated microneedle patch system: Clinical pharmacokinetics and pharmacodynamics for treatment of osteoporosis. Pharm Res 2011;28:159-65.

Marshall S, Sahm LJ, Moore AC. The success of microneedle-mediated vaccine delivery into skin. Hum Vaccin Immunother 2016;12:2975-83.

Skountzou I, Compans RW. Skin immunization with influenza vaccines. Curr Top Microbiol Immunol 2015;386:343-69.

Suh H, Shin J, Kim YC. Microneedle patches for vaccine delivery. Clin Exp Vaccine Res 2014;3:42-9.

Arya J, Prausnitz MR. Microneedle patches for vaccination in developing countries. J Control Release 2016;240:135-41.

Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: A novel approach to transdermal drug delivery. J Pharm Sci 1998;87:922-5.

Matriano JA, Cormier M, Johnson J, Young WA, Buttery M, Nyam K, et al. Macroflux microprojection array patch technology: A new and efficient approach for intracutaneous immunization. Pharm Res 2002;19:63-70.

Donnelly RF, Mooney K, Caffarel-Salvador E, Torrisi BM, Eltayib E, McElnay JC, et al. Microneedle-mediated minimally invasive patient monitoring. Ther Drug Monit 2014;36:10-7.

Kim YC, Chiang B, Wu X, Prausnitz MR. Ocular delivery of macromolecules. J Control Release 2014;190:172-81.

Pettis RJ, Harvey AJ. Microneedle delivery: Clinical studies and emerging medical applications. Ther Deliv 2012;3:357-71.

McCrudden MT, McAlister E, Courtenay AJ, González-Vázquez P, Singh TR, Donnelly RF, et al. Microneedle applications in improving skin appearance. Exp Dermatol 2015;24:561-6.

Bolognia JL, Jorizzo JL, Schaffer JV, editors. Dermatology. 3rd ed. Philadelphia, PA: Saunders; 2012.

Pastore MN, Kalia YN, Horstmann M, Roberts MS. Transdermal patches: History, development and pharmacology. Br J Pharmacol 2015;172:2179-209.

Blickenstaff NR, Coman G, Blattner CM, Andersen R, Maibach HI. Biology of percutaneous penetration. Rev Environ Health 2014;29:145-55.

Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 2008;26:1261-8.

Choy YB, Prausnitz MR. The rule of five for non-oral routes of drug delivery: Ophthalmic, inhalation and transdermal. Pharm Res 2011;28:943-8.

Harvey AJ, Kaestner SA, Sutter DE, Harvey NG, Mikszta JA, Pettis RJ, et al. Microneedle-based intradermal delivery enables rapid lymphatic uptake and distribution of protein drugs. Pharm Res 2011;28:107-16.

Gill HS, Kang SM, Quan FS, Compans RW. Cutaneous immunization: An evolving paradigm in influenza vaccines. Expert Opin Drug Deliv 2014;11:615-27.

Donnelly RF, Moffatt K, Alkilani AZ, Vicente-Pérez EM, Barry J, McCrudden MT, et al. Hydrogel-forming microneedle arrays can be effectively inserted in skin by self-application: A pilot study centred on pharmacist intervention and a patient information leaflet. Pharm Res 2014;31:1989-99.

Norman JJ, Arya JM, McClain MA, Frew PM, Meltzer MI, Prausnitz MR, et al. Microneedle patches: Usability and acceptability for self-vaccination against influenza. Vaccine 2014;32:1856-62.

Baptista A, Teixeira I, Romano S, Carneiro AV, Perelman J. The place of DPP-4 inhibitors in the treatment algorithm of diabetes Type 2: A systematic review of cost-effectiveness studies. Eur J Health Econ 2017;18:937-65.

Kermode M. Unsafe injections in low-income country health settings: Need for injection safety promotion to prevent the spread of blood-borne viruses. Health Promot Int 2004;19:95-103.

Lee BY, Bartsch SM, Mvundura M, Jarrahian C, Zapf KM, Marinan K, et al. An economic model assessing the value of microneedle patch delivery of the seasonal influenza vaccine. Vaccine 2015;33:4727-36.

Kartoglu U, Milstien J. Tools and approaches to ensure quality of vaccines throughout the cold chain. Expert Rev Vaccines 2014;13:843 54.

Mistilis MJ, Joyce JC, Esser ES, Skountzou I, Compans RW, Bommarius AS, et al. Long-term stability of influenza vaccine in a dissolving microneedle patch. Drug Deliv Transl Res 2017;7:195-205.

Vrdoljak A, Allen EA, Ferrara F, Temperton NJ, Crean AM, Moore AC, et al. Induction of broad immunity by thermostabilised vaccines incorporated in dissolvable microneedles using novel fabrication methods. J Control Release 2016;225:192-204.

Hirobe S, Azukizawa H, Hanafusa T, Matsuo K, Quan YS, Kamiyama F, et al. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials 2015;57:50-8.

Pearson FE, McNeilly CL, Crichton ML, Primiero CA, Yukiko SR, Fernando GJ, et al. Dry-coated live viral vector vaccines delivered by nanopatch microprojections retain long-term thermostability and induce transgene-specific T cell responses in mice. PLoS One 2013;8:e67888.

Ameri M, Daddona PE, Maa YF. Demonstrated solid-state stability of parathyroid hormone PTH(1-34) coated on a novel transdermal microprojection delivery system. Pharm Res 2009;26:2454 63.

Liu L, Wang Y, Yao J, Yang C, Ding G. A minimally invasive micro sampler for quantitative sampling with an ultrahigh-aspect-ratio microneedle and a PDMS actuator. Biomed Microdevices 2016;18:59.

Sridhar S, Maleq N, Guillermet E, Colombini A, Gessner BD. A systematic literature review of missed opportunities for immunization in low- and middle-income countries. Vaccine 2014;32:6870-9.

Clements CJ, Larsen G, Jodar L. Technologies that make administration of vaccines safer. Vaccine 2004;22:2054-8.

Gill HS, Prausnitz MR. Does needle size matter? J Diabetes Sci Technol 2007;1:725-9.

Hogan ME, Kikuta A, Taddio A. A systematic review of measures for reducing injection pain during adult immunization. Vaccine 2010;28:1514-21.

Vicente-Pérez EM, Quinn HL, McAlister E, O’Neill S, Hanna LA, Barry JG, et al. The use of a pressure-indicating sensor film to provide feedback upon hydrogel-forming microneedle array self-application in vivo. Pharm Res 2016;33:3072-80.

Birchall JC, Clemo R, Anstey A, John DN. Microneedles in clinical practice – an exploratory study into the opinions of healthcare professionals and the public. Pharm Res 2011;28:95-106.

Mikolajewska P, Donnelly RF, Garland MJ, Morrow DI, Singh TR, Iani V, et al. Microneedle pre-treatment of human skin improves 5-aminolevulininc acid (ALA)- and 5-aminolevulinic acid methyl ester (MAL)-induced ppIX production for topical photodynamic therapy without increase in pain or erythema. Pharm Res 2010;27:2213-20.

Ding Z, Verbaan FJ, Bivas-Benita M, Bungener L, Huckriede A, van den Berg DJ, et al. Microneedle arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice. J Control Release 2009;136:71-8.

Wermeling DP, Banks SL, Hudson DA, Gill HS, Gupta J, Prausnitz MR, et al. Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proc Natl Acad Sci U S A 2008;105:2058-63.

Brogden NK, Banks SL, Crofford LJ, Stinchcomb AL. Diclofenac enables unprecedented week-long microneedle-enhanced delivery of a skin impermeable medication in humans. Pharm Res 2013;30:1947 55.

Haj-Ahmad R, Khan H, Arshad MS, Rasekh M, Hussain A, Walsh S, et al. Microneedle coating techniques for transdermal drug delivery. Pharmaceutics 2015;7:486-502.

Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release 2007;117:227-37.

Edens C, Collins ML, Goodson JL, Rota PA, Prausnitz MR. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine 2015;33:4712-8.

DeMuth PC, Li AV, Abbink P, Liu J, Li H, Stanley KA, et al. Vaccine delivery with microneedle skin patches in nonhuman primates. Nat Biotechnol 2013;31:1082-5.

Kommareddy S, Baudner BC, Oh S, Kwon SY, Singh M, O’Hagan DT, et al. Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens. J Pharm Sci 2012;101:1021-7.

Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008;29:2113-24.

Donnelly RF, Singh TR, Garland MJ, Migalska K, Majithiya R, McCrudden CM, et al. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Funct Mater 2012;22:4879 90.

Singh TR, Dunne NJ, Cunningham E, Donnelly RF. Review of patents on microneedle applicators. Recent Pat Drug Deliv Formul 2011;5:11 23.

Davis SP, Landis BJ, Adams ZH, Allen MG, Prausnitz MR. Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force. J Biomech 2004;37:1155-63.

Crichton ML, Ansaldo A, Chen X, Prow TW, Fernando GJ, Kendall MA, et al. The effect of strain rate on the precision of penetration of short densely-packed microprojection array patches coated with vaccine. Biomaterials 2010;31:4562-72.

Yan G, Warner KS, Zhang J, Sharma S, Gale BK. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int J Pharm 2010;391:7-12.

Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human volunteers. Clin J Pain 2008;24:585-94.

Abdul M, Hajera M. Digitalisation and automation in pharmaceuticals from drug discovery to drug administration. Int J Pharm Pharm Sci 2018;2018:1-10.

Marin SH, et al. A prospective study: Knowledge assessment and patient care of diabetic foot ulcer patients in tertiary care hospital. Int J Pharm Pharm Sci 2017;28:104-10.

Agus K, et al. The effects of physical exercise on the insulin-dependent diabetes mellitus subjects using the modified minimal model. Int J Pharm Pharm Sci 2017;1:179-86.

Published

07-01-2019

How to Cite

Manoj, V. R., and H. Manoj. “REVIEW ON TRANSDERMAL MICRONEEDLE-BASED DRUG DELIVERY”. Asian Journal of Pharmaceutical and Clinical Research, vol. 12, no. 1, Jan. 2019, pp. 18-29, doi:10.22159/ajpcr.2019.v12i1.27434.

Issue

Section

Review Article(s)