NANOCARRIERS FOR TARGETING IN INFLAMMATION

  • Jessy Shaji
  • Maria Lal

Abstract

Unselective drug availability and therefore the use of potentially too high doses are a common problem encountered today. Example for this predicament is inflammatory diseases. Side effects caused by the systemic administration of the NSAIDS and other anti-inflammatory drugs necessitate   targeting of these drugs. Targeting has spatial and temporal properties which deliver the right amount of drug to the right place. Properties of inflamed barrier such as enhanced permeation and retention effect, over-expression of certain cell receptors are great targeting potentials. Tailoring with the peptide sequence of receptors facilitate active targeting. Local inflammation mediated  micro environmental change can also lead to the development of stimuli responsive carriers which helps in ‘smart' delivery of active pharmaceutical moieties  Hence different nanocarriers like liposome, polymeric micelles, dendrimers and nanoparticles, discussed, can be targeted actively and passively for various inflammatory diseases.

Key words: Nanocarriers, enhanced permeation and retention effect, passive targeting, active targeting, stimuli responsive carriers. 

References

1. Danhier F, Feron O, Préat V: To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148: 135–46.
2. Bae YH: Drug targeting and tumor heterogeneity. J Control. Release 2009; 133:2–3.
3. Lamer T: Improving the efficacy of combined modality anticancer therapy using HPMA copolymer-based nanomedicine formulations. Adv Drug Deliv. Rev 2010;62(2): 203–30
4. Solid Lipid Nanoparticles for Drug Delivery: Joseph, S. and Bunjes, H In: D. Douroumis and A. Fahr, editors: Drug Delivery Strategies for Poorly Water-Soluble Drugs. UK ,Oxford: John Wiley & Sons Ltd; 2013 .p.444
5. Ganta S, Devalapally H, Shahiwala A, Amiji M.A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 2008;126:187–204
6. Roerdink FH, Dijkstra J, Spanjer HH , Scherphof GL .Interaction of liposomes with hepatocytes and Kupffer cells in vivo and in vitro.Biochem. Soc. Trans. 121984:
335–36
7. Palmer TN, Caride VJ, Caldecourt MA, Twickler J , Abdullah V. The mechanism
of liposome accumulation in infarction.Biochim.Biophys.Acta1984; 797: 363–68.
8. Jain RK .Delivery of novel therapeutic agents in tumors: physiological barriers
And strategies .J. Natl Cancer Inst.1989; 81: 570–76
9. Torchilin VP. Drug targeting, Eur. J. Pharm. Sci. 2000; 11 Suppl 2: 81–91
10. Kushner I, Somerville JA. Permeability of human synovial membrane to plasmaproteins. Relationship to molecular size and inflammation. Arthritis Rheum. 1971; 14 Suppl 5: 560–70.
11. Levick JR. Permeability of rheumatoid and normal human synovium to specific
plasma proteins. Arthritis Rheum.1981; 24(12):1550–60
12. Chellata F, Merhib Y , Moreauc A, Hocine L. Therapeutic potential of Nanoparticulate systems for macrophage targeting. Biomaterials 2005;26: 7260–275
13. Merodio M,Irache JM, Eclancher F,Mirshahi M, Villarroya H .Distribution of albumin nanoparticles in animals induced with the experimental allergic encephalomyelitis. J Drug Target2000;8:289–303
14. Frances R, Will B, Mantovani A. Cancer-related inflammation: Common themes and therapeutic opportunities. Seminars in Cancer Biology 2012;22: 33– 40
15. Gerweck LE, Kozin SV and SJ Stocks. The pH partition theory predicts the accumulation and toxicity of doxorubicin in normal and low-pH-adapted cells. British
Journal of Cancer 1999;79(5/6): 838–842
16. Meers P. Enzyme-activated targeting of liposomes. Adv Drug Deliv Rev. 2001; 53(3):265-72.
17. Matsumura Y, Maeda H.A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor
agent SMANCS, Cancer Res. 1986;46: 6387–92
18. Yuan F, Leunig M, Huang SK, Berk DA, Papahad-jopoulos D, Jain RK .Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 1994; 54:3352– 56.
19. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev 2001;53 :283–318
20. Barbé C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A,
Calleja G.Silica particles: a novel drug-delivery system. Adv. Mater 2004;16: 1–8
21. Guan J, He H, Yu B, Lee LJ. Polymeric nanoparticles and nanopore membranes
for controlled drug and gene delivery, in: Gonsalves K, Halberstadt C, Laurencin CT, Nair L (Eds.). Biomedical Nanostructures, Wiley-Interscience, Hoboken,NJ 2007: 115–37.
22. Bae YH, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. J Control Release 2011;153: 198–205
23. Konno T, Maeda H, Iwai K, Tashiro E, Maki S, Morinaga T, Mochinaga M,
Hiraoka T , Yokoyama I. Effect of arterial administration of high-molecular-weight
anticancer agent SMANCS with lipid lymphographic agent on hepatoma: a preliminary report.Eur. J. Cancer Clin. Oncol.1983; 19: 1053–65.
24. Valerio –Lepiniec M, Adjadj E, Minard P, Desmadril M, Keyinteractions in neocarzinostatin. A protein of the immunoglobulin fold family.Protein Eng.2002;15: 861–69.
25. Courtice FC, The origin of lipoprotein in lymph, in: H.S. Mayersen (Ed.).Lymph
and the Lymphatic System. C. C Thomas Publisher, Springfield, IL, 1963: 89–126.
26. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice.Pharmacol. Rev 2001; 53: 283–318.
27. Barbé C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G. Silica particles: a novel drug-delivery system. Adv. Mater. 2004; 16: 1–8.
28. Guan J, He H, Yu B, Lee LJ. Polymeric nanoparticles and nanopore membranes for controlled drug and gene delivery, in: K. Gonsalves, C. Halberstadt, C.T. Laurencin, L. Nair (Eds.). Biomedical Nanostructures, Wiley-Interscience, Hoboken,NJ 2007: 115–37.
29. Savic R , Azzam T , Eisenberg A, Maysinger D. Assessment of the integrity of poly
(caprolactone)-b-poly (ethylene oxide) micelles under biological conditions: a fluorogenic-based approach. Langmuir 2006; 22: 3570–78
30. Bazile D, Prud’homme C, Bassoullet MT, Marlard M, G Spenlehauer, Veillard M. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci1995; 84:493–98.
31. Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P. Poly (alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Del Rev 2003; 55:519–48
32. Koch AE. Angiogenesis as a target in rheumatoid arthritis [review].Ann Rheum Dis
2003; 62 Suppl 2:ii60–7
33. Walsh DA, Wade M, Mapp PI, Blake DR. Focally regulate dendothelial proliferation and cell death in human synovium. Am JPathol 1998;152:691–702
34. Levick JR. Permeability of rheumatoid and normal human synovium to specific plasma proteins. Arthritis Rheum 1981; 24:1550–60.
35. Stehle G, Wunder A, Sinn H,Schrenk HH, Schutt S, Frei E, etal. Pharmacokinetics of methotrexate-albumin conjugates in tumor bearing rats. Anticancer Drugs 1997;8:835–44
36. Wunder A, Muller-Ladner U, Stelzer EH, Funk J, Neumann E ,Stehle G et al. Albumin-based drug delivery as novel therapeutic approach for rheumatoid arthritis. J Immunol 2003;170:4793–801
37. Calvo P, Gouritin B, Villarroya H, Eclancher F, Giannavola C, Klein C, Andreux JP .Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat, Eur. J. Neurosci 2002;15(8): 1317–26
38. Schmidt J, Metselaar JM, Wauben MHM, Toyka KV, Storm G, Gold R, Drug
targeting by long-circulating liposomal glucocorticosteroids increases therapeutic
efficacy in a model of multiple sclerosis, Brain 2003;126(8): 1895–1904.
39. Chacko A, Hood ED, Zern BJ, Muzykantov VR .Targeted nanocarriers for imaging and therapy of vascular inflammation. Current Opinion in Colloid & Interface Science 2011;16: 215–27
40. Fiehn C, Muller-Ladner U, Gay U ,Krienke S, Freudenberg-Konrad S , Funk J, et al. Albumin-coupled methotrexate (MTXHSA)is a new anti-arthritic drug which acts synergistically to MTX. Rheumatology (Oxford) 2004;43:1097–105
41. De Bois MH, Arndt JW, Speyer I, Pauwels EK, Breedveld FC.Technetium-99m labelled human immunoglobulin scintigraphy predicts rheumatoid arthritis in patients with arthralgia. ScandJRheumatol 1996; 25:155–8.
42. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4:145–60
43. Boerman OC, Oyen WJ, Storm G, Corvo ML, van Bloois L, vander Meer JW, et al. Technetium-99m labelled liposomes to image experimental arthritis. Ann Rheum Dis
1997; 56:369–73.
44. Dams ET, Oyen WJ, Boerman OC, Storm G, Laverman P, KokPJ,et al. 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J Nucl Med 2000; 41:622–30
45. Barrera P, Blom A, van Lent PL, van Bloois L, Beijnen JH, vanRooijen N, et al. Synovial macrophage depletion with clodronate containing liposomes in rheumatoid arthritis. Arthritis Rheum2000;43:1951–9.
46. Metselaar JM, van den Berg WB, Holthuysen AE, WaubenMH, Storm G, van Lent PL. Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis. Ann Rheum Dis 2004; 63:348–53.
47. Metselaar JM ,Wauben MH , Wagenaar-Hilbers JP ,Boerman OC,Storm G. Complete
remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. ArthritisRheum 2003; 48:2059–66.
48. YeaJ, QunWang B. Pharmaceutical Nanotechnology injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. International Jour. of Pharmaceutics 2008;352(1-2): 273–79
49. Ishihara T, Kubota T, Choi T, Higaki M. Treatment of experimental arthritis with stealth-type polymeric nanoparticles encapsulating Betamethasone phosphate. J
Pharmacol ExpTher 2009; 329:412-7
50. Sethi V, Rubinstein I , Onyuksel H. Vasoactive intestinal peptide (VIP)loaded sterically stabilized micelles (SSM) for improved therapy ofcollagen induced arthritis (CIA) in mice. PharmSci 2002;4(Suppl):T2036.
51. Higaki M, Ishihara T, Izumo N, Takatsu M, Mizushima Y. Treatment of experimental arthritis with poly(D, L-lactic/glycolic acid) nanoparticles encapsulating betamethasone sodium phosphate, Ann. Rheum.2005;64(8): 1132–36.
52. Ishihara T, Takahashi M, Higaki M, Mizushima Y, Mizushima T. Preparation and characterization of a nanoparticulate formulation composed of PEG-PLA and PLA as anti-inflammatory agents. Int. J. Pharm. 2010;385 (1–2) : 170–75
53. Palakurthi S, Vyas SP , Diwan PV. Biodisposition of PEG-coated lipid microspheres of indomethacin in arthritic rats, Int. J. Pharm. 2005;290 (1–2):55–62
54. Chauhan AS , Jain NK, Diwan PV, Khopade AJ. Solubility enhancement of Indomethacin with poly(amidoamine) dendrimers and targeting to inflammatory
regions of arthritic rats.J. Drug Target.2004; 12 (9–10):575–83
55. Thakkar H, Sharma RK, Mishra AK, Chuttani K, Murthy RR, Albumin microspheres as carriers for the antiarthritic drug celecoxib.AAPSPharmSciTech
2004;6(1): E65–E73

56. Lucchinetti C , Bruck W, Parisi J, Scheithauer B,Rodriguez M,Lassmann H. Heterogeneity ofmultiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol2000; 47:707–17.
57. Misko TP, Trotter JL, Cross AH. Mediation of inflammation byencephalitogenic cells: interferon gamma induction of nitric oxidesynthase and cyclooxygenase-2. J Neuroimmunol 1995; 61:195–204.
58. Benveniste EN. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med1997; 75:165–73.
59. Brosnan CF, Bornstein MB, Bloom BR. The effects of macrophage depletion on the clinical and pathologic expression of experimental allergic encephalomyelitis. J Immunol1981;126:614–20
60. Huitinga I ,VanRooijen N , De Groot CJA, Uitdehaag BMG,Dijkstra CD. Suppression of experimental allergic encephalomyelitisin Lewis rats after elimination of macrophages. J ExpMed 1990;172:1025–33
61. Bauer J, Huitinga I, Zhao W, Lassmann H , Hickey WF , Dijkstra CD. The role of macrophages, perivascular cells, and microglialcells in the pathogenesis of experimental autoimmune encephalomyelitis.Glia1995; 15:437–46.
62. Thomas ED, Ramberg RE , Sale GE , Sparkes RS, Golde DW.Direct evidence for a bone marrow origin of the alveolar macrophage in man. Science 1976; 192:1016–8.
63. Kizelsztein P, Ovadia H, Garbuzenko O, Sigal A, Barenholz Y, Pegylated
nanoliposomes remote-loaded with the antioxidant tempamine ameliorate experimental autoimmune encephalomyelitis, J. Neuroimmunol. 2009; 213 (1–2):20–25
64. Osanai T, Nagai Y. Suppression of experimental allergic encephalomyelitis(EAE) with liposome-encapsulated protease inhibitor: Therapy through the blood–brain barrier, Neurochem. Res. 1984;9 (10): 1407–16.
65. Huitinga I, Van Rooijen N, De Groot C, Uitdehaag B, Dijkstra C, Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages, J. Exp. Med. 1990;172 (4) : 1025–33.
66. Brosnan CF, Bornstein MB, Bloom BR. The effects of macrophage depletion on
the clinical and pathologic expression of experimental allergic encephalomyelitis,J. Immunol. 1981;126 (2) : 614–20.
67. Schmidt J, Metselaar JM, Wauben MHM, Tokya KV, Storm G. & Gold R .Drug targeting by long circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain2003; 126:1895–1904.
68. Hu W, Metselaar J, Ben L-H, Cravens PD, Singh MP, et al. PEG Minocycline-Liposomes Ameliorate CNS Autoimmune Disease. PLoS ONE 2009 4(1): e4151
69. Yong VW,Wells J, Giuliani F,Casha S,Power C.&Metz LM. The promise of
minocycline in neurology. LancetNeurol.2004: 3: 744–51
70. Dai H, Navath RS , Balakrishnan B,Raja Guru B , Mishra MK, Romero R etal.Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration .Nanomedicine (Lond).2010; 5(9): 1317–29.
71. BingW,Navath RS, Romero R, Kannan S, Kannan R.Anti-inflammatory and anti-oxidant activity of anionic dendrimer–N-acetylcysteine conjugates in activated microglial cells.International Journal of Pharmaceutics 2009;377:159–68
72. HuanY, Kevin J.Targeting HMGB1 in inflammation. Biochimica et BiophysicaActa 2010;1799: 149–56
73. Stern D, Yan SD, Yan SF, Schmidt AM .Receptor for advanced glycation endproducts: a multiligand receptor magnifying cell stress in diverse pathologic Settings.Adv. Drug Deliv. Rev.2002;54:1615–25
74. Taguchi AD, Blood C, Del G , Canet A, Lee DC, Qu W, et al. Blockade of
RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature
2000;405: 354–60.
75. Kokkola R, Li J, Sundberg E, Aveberger AC, Palmblad K, Yang H, Tracey KJ, Andersson U, Harris HE. Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis Rheum. 2003;48: 2052–58.
76. Hofmann MA, Drury S, Hudson BI, Gleason MR, Qu W, Lu Y, Lalla E et al RAGE and arthritis: the G82Spolymorphism amplifies the inflammatory response, Genes Immun. 2002;3:123–35.
77. Zetterstrom CK, Jiang W, Wahamaa H, Ostberg T, Aveberger AC, Schierbeck H etal.Pivotal advance: inhibition of HMGB1 nuclear translocation as a mechanism for the anti-rheumatic effects of gold sodium thiomalate.J. Leukoc. Biol. 2008; 83:31–38.
78. Abad C, Martinez C, Leceta J, Gomariz RP, Delgado M. Pituitary adenylatecyclase-activating polypeptide inhibits collagen-induced arthritis: an experimental immunomodulatory therapy. J. Immunol 2001;167:3182–89.
79. Van Maanen MA, Lebre MC, Van der Poll T,LaRosa GJ, Elbaum D, Vervoordeldonk MJ, Tak PP. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice, Arthritis Rheum. 2009;60: 114–22.
80. Ulbrich W and Lamprecht A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J. R. Soc. Interface
2010;7(1):S55-S66
81. Lamprecht A, Schafer U, Lehr CM .Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm. Res. 2001; 18: 788–793.
82. Bhol KC, Schechter PJ.Effects of nanocrystalline silver (NPI 32101) in a rat model of ulcerative colitis. Dig. Dis. Sci 2007; 52:2732–2742.
83. Hoshino H ,Goto H, Sugiyama S,Hayakawa T& Ozawa T. Effects of FK506 on an experimental model of colitis in rats. Aliment. Pharmacol. Ther. 1995;9: 301–307.
84. Matsuhashi N et al. 2000 Tacrolimus in corticosteroid resistant ulcerative colitis. J. Gastroenterol. 35, 635–640.
85. Lamprecht A, Yamamoto H, Takeuchi H & KawaShima Y.Nanoparticles enhance therapeutic efficiency by selectively increased local drug dose in experimental colitis inrats. J. Pharmacol.Exp.Ther2005;315:196–202.
86. Meissner Y, Pellequer Y, &Lamprecht A. Nanoparticlesin inflammatory bowel disease: particle targeting versus pH-sensitive delivery. Int. J. Pharm 2006;316: 138–143.
87. Beduneau A, Saulnier P, Hindre F, Clavreul A, Leroux JC, Benoit JP. Design of
targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab'fragments.Biomaterials 2007;28: 4978–4990
88. Klibanov AL, Antibody-mediated targeting of PEG-coated liposomes, in: Woodle MC, Storm G (Eds.). Long-circulating Liposomes: Old Drugs,New Therapeutics,SpringerVerlag, 1998: pg 269
89. Benhar I, Padlan EA, Jung SH, Lee B, Pastan I. Rapid humanization of the Fv of monoclonal antibody B3 by using framework exchange of the recombinantimmunotoxinB3(Fv)-PE38. Proc. Natl. Acad. Sci. U. S. 1994;91: 12051–12055
90. Torchilin VP, Levchenko TS, Lukyanov AN, Khaw BA, Klibanov AL, Rammohan R, Samokhin GP, Whiteman KR .p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim.Biophys. Acta2001; 1511: 397–411.
91. Costa C, Incio J ,Soares R.Angiogenesis and chronic inflammation: cause or
consequence? Angiogenesis 2007; 10(3):149–66.
92. Szekanecz Z, Besenyei T,Szentpétery A, Koch AE. Angiogenesis and vasculogenesis in rheumatoid arthritis. Curr.Opin. Rheumatol.2010;22(3): 299–306
93. Kinne RW, Stuhlmüller B, Burmester GR. Cells of the synovium in rheumatoid
arthritis. Macrophages. Arthritis Res. Ther 2007; 9(6):224-16
94. Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons andOpportunities.Nat. Rev. Drug Discov. 2010;9(10): 804–20.
95. Goracinova K, Dodov M, Crcarevska Mand Geskovsk N.Drug Targeting in IBD Treatment – Existing and New Approaches, Inflammatory Bowel Disease - Advances in Pathogenesis and Management, Dr. Sami Karoui (Ed.) 2012 ISBN: 978-953-307-891-5
96. Gerlag D, Borges E, Tak P, Ellerby HM, Bredesen D, Pasqualini R, Ruoslahti E,
Firestein G. Suppression of murine collagen-induced arthritis by targeted apoptosis of synovial neovasculature. Arthritis Res 2001;3(6): 357–61.
97. Low PS, Henne WA, Doorneweerd DD. Discovery and development of folicacid-
based receptor targeting for imaging and therapy of cancer and inflammatory diseases.
Acc. Chem. Res 2008;41(1): 120–29.
98. Koning GA, Schiffelers RM, Wauben MHM, Kok RJ, Mastrobattista E, Molema G, et al.. Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate-containing RGD peptide liposomes inhibits experimental arthritis. Arthritis Rheum 2006;54(4): 1198–1208
99. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR ,Kamen BA. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res.1992;52(12): 3396–3401.
100. Nakashima-Matsushita N, Homma T, Yu S, Matsuda T, Sunahara N, Nakamura T, et al. Selective expression of folate receptor β and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis Rheum 1999; 42(8): 1609–16.
101. Turk MJ, Breur GJ, Widmer WR, Paulos CM, Xu LC, Grote LA, Low PS.Folate- targeted imaging of activated macrophages in rats with
Adjuvant induced Arthritis.Arthritis Rheum. 2002;46(7):1947–55103
102. Low PS, Antony AC. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv. Rev 2004; 56(8): 1055–58.
103.Wang X, Shen F, Freisheim JH, Gentry LE, Ratnam M. Differential Stereospecificities and affinities of folate receptor isoforms for folate compounds And antifolates.Biochem. Pharmacol 1992; 44(9):1898–190.
104. Turk MJ, Waters DJ, Low PS. Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer Lett 2004;213(2):165–172.
105. Brooks PC, Clark RAF, Cheresh DA. Requirement of vascular integrin αvβ3 for Angiogenesis. Science 1994; 264 (5158) :569–71
106.Crielaard JB , Lammers T , Raymond M , Storm G.Drug targeting systems for inflammatory disease: One for all, all for one. J Control Release 2012;161:225–34
107. Garrood T and Pitzalis C . Targeting the Inflamed Synovium: The Quest For Specificity. Arthritis& Rheumatism 2006; 54(4):1055–60
108.Cai W, Shin DW, Chen K, Gheysens O , Cao Q, Wang SX , et al.Peptide-labeled near-Infrared quantum dots for imaging tumor vasculature in living subjects. NanoLett2006; 6:669-76.
109.Zhou HF, Yan H,Senpan A, Wickline SA, Pan D, Lanza GM .Pham Suppression of inflammation in a mouse model of rheumatoid arthritis using targeted lipase-labile fumagillin prodrug nanoparticles. Biomaterials2012; 33(33):8632-40
110.Koo OM, Rubinstein I , ÚnyÏksel H. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm Res 2011; 28:776-87.
111.Lee SM, Kim HJ, Ha YJ,Park YN, Lee SK, Park YB, Yoo KH Targeted Chemo-Photothermal Treatments of Rheumatoid Arthritis Using Gold Half-Shell Multifunctional Nanoparticles.ACS Nano. 2012; 50–57.
112. Patil P, Patil L, Kadam V. TNF-α: a potential therapeutic target for inflammatory bowel disease.Asian J Pharm Clin Res 2011;4 Suppl 1: 158-166
113.Ashok B, Arleth L, Hjelm RP, Rubinstein I,Onyuksel H. In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization:effects of PEG chain length and PC incorporation. J Pharm Sci.2004;93(10):2476-87.
114.Kim YJ, Chae SY, Jin CH,Sivasubramanian M, Son S, Choi KY, et al. Ionic complex systems based on hyaluronic acid and PEGylated TNF-related Apoptosis inducing ligand for treatment of rheumatoid arthritis. Biomaterials2010;31, 34: 9057- 64.
115.Nagayoshi R , Nagai T, Matsushita K, Sato K,Sunahara N,Matsuda T, et al.Effectiveness of anti-folate receptor beta antibody conjugated with truncated Pseudomonas exotoxin in the targeting of rheumatoid arthritis synovial macrophages.Arthritis Rheum 2005;52(9) : 2666-75.
116. Chandrasekar D, Sistla R, Ahmad FG,Khar RK, &Diwan PV. The
Development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats.Biomaterials 2007;28(3)504-12.
117.Banquy X, Leclair G, Rabanel JM, Argaw A , Bouchard JF, Hildgen P, et al. Selectins ligand decorated drug carriers for activated endothelial cell targeting.BioconjugChem2008;19(10) : 2030-39.
118.Hirai M, Minematsu H, Kondo N, Oie K, Igarashi K, Yamazaki N.
Accumulation of liposome with Sialyl Lewis X to inflammation and tumor region: application to in vivo bio-imaging. Biochem Biophys Res Commun, 2005; 353(3):553-58.
119. Sergeeva A, Kolonin MG, Molldrem JJ, Pasqualini R, Arap W.Display technologies: application for the discovery of drug and gene delivery agents.Adv. Drug Deliv Rev. 2006; 58 (15) :1622–54
120. Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysisof rare harmful effects in randomized controlled trials. JAMA 2006; 295:2275–85
121. Fattal E, Couvreur P, Dubernet C.Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes, Adv. Drug Deliv. Rev.2004; 56(7):931–46.
122.Liu X, Quan M, Tian LDJ, Laquer CP, Ciborowski P,Wang D.
Syntheses of click PEG dexamethasone conjugates for the treatment of rheumatoid arthritis.Biomacromolecules2010;11(10): 2621-28.
123.Kim SY, Ha JC, Lee YM .Poly(ethylene-oxide)-poly(propylene oxide)poly(ethyleneoxide)/poly(epsilon-caprolactone)(PCL) amphiphilic block copolymeric nanospheres. II. Thermo-responsive drug release behaviors. J. Control. Release 2000;65: 345–58.
124. Bae KH, Choi SH, Park SY, Lee Y, Park TG.Thermosensitive pluronic
Micelles stabilized by shell cross-linking with gold nanoparticles, Langmuir 2006; 22: 6380–663
125.Timko M, Koneracka M, Tomasovicova N ,Kopcansky P, Zavisova V. Magnetite polymer nanospheres loaded by Indomethacin for anti-inflammatory therapy. Journal of Magnetism and Magnetic Materials 2006; 300: e191–e194
126. Vitaliy KV, Tirelli N.Oxidation- responsiveness of nanomaterials
for targeting inflammatory reactions.Pure Appl. Chem 2008;80(8);1703–18.
127. Jukanti R, Devaraj G, Devaraj R, Apte S.Drug targeting to inflammation: Studies on
antioxidant surface loaded diclofenac liposomes. International Journal of Pharmaceutics 2011; 414:179– 185
Statistics
717 Views | 415 Downloads
How to Cite
Shaji, J., and M. Lal. “NANOCARRIERS FOR TARGETING IN INFLAMMATION”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 6, no. 7, Aug. 2013, pp. 3-12, https://innovareacademics.in/journals/index.php/ajpcr/article/view/314.
Section
Articles