ALTERATIONS OF LIPID LEVELS MAY INDUCE THE INSULIN RESISTANCE IN TYPE TWO DIABETES MELLITUS: A SYSTEMIC REVIEW

P.DIVYA JYOTHI1, N.DOONDI PHANI KUMAR*2 , A.VINAY MOHAN2, A. RAMYA SAI2 1Assisitant Professor, Nirmala College of Pharmacy,Atmakuru.2 Pharm D Students, Nirmala College Of Pharmacy, Atmakuru. phani.krishna.07.97@gmail.com

  • DIVYA JYOTHI P Department of Pharmacy Practice, Nirmala College of Pharmacy, Atmakur, Andhra Pradesh, India. https://orcid.org/0000-0002-0660-541X
  • DOONDI PHANI KUMAR N Department of Pharmacy Practice, Pharm D Students, Nirmala College of Pharmacy, Atmakur, Andhra Pradesh, India.
  • VINAY MOHAN A Department of Pharmacy Practice, Pharm D Students, Nirmala College of Pharmacy, Atmakur, Andhra Pradesh, India.
  • RAMYA A Department of Pharmacy Practice, Pharm D Students, Nirmala College of Pharmacy, Atmakur, Andhra Pradesh, India.

Abstract

Diabetes mellitus (DM) is not one disorder; it represents a series of metabolic conditions related to hyperglycemia and caused by defects in hormone secretion and hormone action. Exposure to chronic hyperglycemia may result in microvascular complications in the retina (diabetic retinopathy), kidney (diabetic nephropathy), neuron (diabetic-neuropathy), skin, foot, and cardiac complications (stroke, hypertension…etc.). International Diabetes Federation estimates that 1.1 million children and adolescents aged 14–19 years have type one DM. Without interventions to halt the increase in diabetes, there will be at least 629 million people living with diabetes by 2045. In the body, white adipose tissue is the leading site for the storage of excess energy produced from the food intake in large quantities, of the development of insulin resistance (IR) and type 2 DM by the over intake of fatty acid in the body. It results in the accumulation of fatty acyl co-A (FA-CoA) within the myocytes. It leads to improper signaling of the insulin and reduces the level in the myocytes and pancreases beta cells. It combines with genetically reduces the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) coactivator-1, initiates the inflammation process by the activation of the tumor necrotic factor alpha and protein kinase C. These alterations lead to further increase the intramyocellular FA-CoA and triglycerides. The sequence of events may develop mitochondrial dysfunction in the sarcolemma outer layers. Finally improves IR also with increasing intramyocellular lipids. This concept might be helpful to those who are pursuing endocrinology specialization, nursing staff, pharmacists, and other medical departments.

Keywords: Diabetes mellitus, Hyperglycemia, Essential fatty acids, Lipid metabolism, Expression of peroxisome proliferator-activated receptorgamma coactivator, Fatty acyl co-A, Triglycerides, Insulin resistance

References

1. World Health Organization. Diabetes. Geneva: World Health Organization; 2020. Available from: https://www.who.int/news-room/ fact-sheets/detail/diabetes. [Last accessed on 2020 Jan 11].
2. Venes D. Taber’s Cyclopaedia Medical Dictionary. 21st ed. USA: F A Davis; 2015.
3. Ahmed AM. History of diabetes mellitus. Saudi Med J 2002;23:373-8.
4. Ng E, Vanderloo SE, Geiss L, Johnson JA. Concordance between self-report and a survey-based algorithm for classification of Type 1 and Type 2 diabetes using the 2011 population-based survey on living with chronic diseases in Canada (SLCDC)-Diabetes component. Can J Diabetes 2013;37:249-53.
5. Bellatorre A, Jackson SH, Choi K. Development of the diabetes typology model for discerning Type 2 diabetes mellitus with national survey data. PLoS One 2017;12:e0173103.
6. Urrutia I, Martínez R, Rica I, Martínez de LaPiscina I, García- Castaño A, Aguayo A, et al. Negative autoimmunity in a Spanish pediatric cohort suspected of Type 1 diabetes, could it be monogenic diabetes? PLoS One 2019;14:e0220634.
7. Davis TM, Makepeace AE, Ellard S, Colclough K, Peters K, Hattersley A, et al. The prevalence of monogenic diabetes in Australia: The fremantle diabetes study phase II. Med J Aust 2017;207:344-7.
8. Narayan KM. Type 2 diabetes: Why we are winning the battle but losing the war? 2015 Kelly West Award Lecture. Diabetes Care 2016;39:653-63.
9. Gujral UP, Narayan KM, Kahn SE, Kanaya AM. The relative associations of ?-cell function and insulin sensitivity with glycemic status and incident glycemic progression in migrant Asian Indians in the United States: The MASALA study. J Diabetes Complications 2014;28:45-50.
10. Woodmansey C, McGovern AP, McCullough KA, Whyte MB, Munro NM, Correa AC, et al. Incidence, demographics, and clinical characteristics of diabetes of the exocrine pancreas (Type 3c): A retrospective cohort study. Diabetes Care 2017;40:1486-93.
11. Vftter K. Diabetes mellitus. WHO Technical Report Series 727. 113 Seiten. World Health Organization, Geneva 1985. Preis: 9.00 Sw. Fr. Food Nahrung 1986;30:700.
12. Bending J. Book review: Costing diabetes: The case for prevention. IDF task force on diabetes health economics. International Diabetes Federation, Brussels, 1997. Diabet Med 1998;15:705.
13. Seok H, Cha BS. Response: Balsamic vinegar improves high fat-induced beta cell dysfunction via beta cell ABCA1 (Diabetes Metab J 2012;36:275-9). Diabetes Metab J 2012;36:390.
14. Jun JE, Lee SE, Lee YB, Jee JH, Bae JC, Jin SM, et al. Increase in serum albumin concentration is associated with prediabetes development and progression to overt diabetes independently of metabolic syndrome. PLoS One 2017;12:e0176209.
15. Narendran P, Estella E, Fourlanos S. Immunology of Type 1 diabetes. QJM 2005;98:547-56.
16. Edelman SV, Morello CM. Strategies for insulin therapy in Type 2 diabetes. South Med J 2005;98:363-71.
17. Weinman EO, Strisower EH, Chaikoff IL. Conversion of fatty acids to carbohydrate; application of isotopes to this problem and role of the Krebs cycle as a synthetic pathway. Physiol Rev 1957;37:252-72.
18. de Figueiredo LF, Schuster S, Kaleta C, Fell DA. Can sugars be produced from fatty acids? A test case for pathway analysis tools. Bioinformatics 2008;24:2615-21.
19. Devendra D, Liu E, Eisenbarth GS. Type 1 diabetes: Recent developments. BMJ 2004;328:750-4.
20. Paschou SA, Papadopoulou-Marketou N, Chrousos GP, Kanaka- Gantenbein C. On Type 1 diabetes mellitus pathogenesis. Endocr Connect 2018;7:R38-46.
21. Wherrett DK, Daneman D. Prevention of Type 1 diabetes. Endocrinol Metab Clin North Am 2009;38:777-90.
22. American Diabetes Association. 7. Diabetes technology: Standards of medical care in diabetes-2019. Diabetes Care 2019;42:S71-80.
23. American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2020. Diabetes Care 2020;43:S14-31.
24. American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2019. Diabetes Care 2019;42:S13-28.
25. Bloomgarden ZT. American Diabetes Association Annual Meeting, 1999: Insulin action and the development of Type 2 diabetes. Diabetes Care 2000;23:248-52.
26. Turner P. Clinical Pharmacology, seventh edition. Postgrad Med J 1993;69:836.
27. Colagiuri S, Lee CM, Wong TY, Balkau B, Shaw JE, Borch-Johnsen K, et al. Glycemic thresholds for diabetes-specific retinopathy: Implications for diagnostic criteria for diabetes. Diabetes Care 2011;34:145-50.
28. Prentki M, Nolan CJ. Islet beta cell failure in Type 2 diabetes. J Clin Invest 2006;116:1802-12.
29. The mysteries of Type 2 diabetes in developing countries. Bull World Health Organ 2016;94:241-2.
30. Jialal I, Singh G. Management of diabetic dyslipidemia: An update. World J Diabetes 2019;10:280-90.
31. American Diabetes Association. Screening for Type 2 diabetes. Diabetes Care 2004;27 Suppl 1:S11-4.
32. Tran HT, Liong S, Lim R, Barker G, Lappas M. Resveratrol ameliorates the chemical and microbial induction of inflammation and insulin resistance in human placenta, adipose tissue and skeletal muscle. PLoS One 2017;12:e0173373.
33. Ngala RA, Fondjo LA, Gmagna P, Ghartey FN, Awe MA. Placental peptides metabolism and maternal factors as predictors of risk of gestational diabetes in pregnant women. A case-control study. PLoS One 2017;12:e0181613.
34. Alfadhli EM. Gestational diabetes mellitus. Saudi Med J 2015;36:399-406.
35. Catalano PM, Tyzbir ED, Roman NM, Amini SB, Sims EA. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am J Obstet Gynecol 1991;165:1667-72.
36. Health Services Executive. Available from: https://www.hse.ie/eng/ health/az/d/diabetes,gestational/diagnosing-gestational-diabetes.html.
37. Barbour LA, McCurdy CE, Hernandez TL, Kirwan JP, Catalano PM, Friedman JE. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care 2007;30 Suppl 2:S112-9.
38. Johns EC, Denison FC, Norman JE, Reynolds RM. Gestational diabetes mellitus: Mechanisms, treatment, and complications. Trends Endocrinol Metab 2018;29:743-54.
39. Xiang AH, Peters RK, Trigo E, Kjos SL, Lee WP, Buchanan TA. Multiple metabolic defects during late pregnancy in women at high risk for Type 2 diabetes. Diabetes 1999;48:848-54.
40. Buchanan TA, Metzger BE, Freinkel N, Bergman RN. Insulin sensitivity and B-cell responsiveness to glucose during late pregnancy in lean and moderately obese women with normal glucose tolerance or mild gestational diabetes. Am J Obstet Gynecol 1990;162:1008-14.
41. Damm P, Kühl C, Bertelsen A, Mølsted-Pedersen L. Predictive factors for the development of diabetes in women with previous gestational diabetes mellitus. Am J Obstet Gynecol 1992;167:607-16.
42. Di Cianni G, Miccoli R, Volpe L, Lencioni C, Del Prato S. Intermediate metabolism in normal pregnancy and in gestational diabetes. Diabetes Metab Res Rev 2003;19:259-70.
43. World Health Organization. Diabetes Program, Diabetes Basics. Geneva: World Health Organization. Available from: https://www.who. int/diabetes/action.
44. Committee on Practice Bulletins-Obstetrics. ACOG practice bulletin No. 190: Gestational diabetes mellitus. Obstet Gynecol 2018;131:e49-64.
45. Girdharwal N. The role of psychological well-being in positive human health. Indian J Public Health Res Dev 2019;10:93.
46. American Diabetes Association. (2) Classification and diagnosis of diabetes. Diabetes Care 2015;38 Suppl: S8-16.
47. Diabetes Community, Support, Education, Recipes and Resources Diabetes; 2020. Available from: https://www.diabetes.co.uk. [Last accessed on 2020 Feb 24].
48. Hattersley A, Bruining J, Shield J, Njolstad P, Donaghue K, International Society for Pediatric and Adolescent Diabetes. ISPAD clinical practice consensus guidelines 2006-2007. The diagnosis and management of monogenic diabetes in children. Pediatr Diabetes 2006;7:352-60.
49. Naik R, Brooks-Worrell B, Palmer J. Latent autoimmune diabetes in adults. J Clin Endocrinol Metab 2009;94:4635-44.
50. de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2008;2:1101-13.
51. Type 3 Diabetes: Cross-talk between Differentially Regulated Proteins of Type 2 Diabetes Mellitus and Alzheimer’s Disease: Khaytimittal, Ruchijakmola, Mani, Depshikha Pande Katare, Scientific Reports. Switzerland: Springer Nature; 2016.
52. Uday S, Campbell F, Cropper J, Shepherd M. Monogenic diabetes and Type 1 diabetes mellitus: A challenging combination. Pract Diabetes 2014;31:327-30.
53. van der Donk LJ, Fleer J, Sanderman R, Emmelkamp PMG, Links TP, Tovote KA, et al. Is type of depressive symptoms associated with patient-perceived need for professional psychological care in depressed individuals with diabetes? PLoS One 2019;14:e0212304.
54. Cuervo AM, Bergamini E, Brunk UT, Dröge W, Ffrench M, Terman A. Autophagy and aging: The importance of maintaining “clean” cells. Autophagy 2005;1:131-40.
55. Adeniyi AF, Adeleye JO, Adeniyi CY. Diabetes, sexual dysfunction and therapeutic exercise: A 20 year review. Curr Diabetes Rev 2010;6:201-6.
56. Almigbal T. Erectile dysfunction in men with Type 2 diabetes: Is it associated with poor glycemic control? J Mens Health 2019;15:e12-22.
57. USRDS, 2006 ADR: Incidence and Prevalence. Am J Kidney Dis 2007;49:S67-84.
58. Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 1983;32 Suppl 2:64-78.
59. Nichols GA, Déruaz-Luyet A, Hauske SJ, Brodovicz KG. The association between estimated glomerular filtration rate, albuminuria, and risk of cardiovascular hospitalizations and all-cause mortality among patients with Type 2 diabetes. J Diabetes Complications 2018;32:291-7.
60. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in Type 2 diabetes: UKPDS 38. UK prospective diabetes study group. BMJ 1998;317:703-13.
61. Frank RN. Diabetic retinopathy. N Engl J Med 2004;350:48-58.
62. Hirai FE, Tielsch JM, Klein BE, Klein R. Ten-year change in vision-related quality of life in Type 1 diabetes: Wisconsin epidemiologic study of diabetic retinopathy. Ophthalmology 2011;118:353-8.
63. Abbott CA, Malik RA, van Ross ER, Kulkarni J, Boulton AJ. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 2011;34:2220-4.
64. Obrosova IG. Diabetic painful and insensate neuropathy: Pathogenesis and potential treatments. Neurotherapeutics 2009;6:638-47.
65. Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with Type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998;339:229-34.
66. Laing SP, Swerdlow AJ, Slater SD, Burden AC, Morris A, Waugh NR, et al. Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia 2003;46:760-5.
67. Domanski M, Mitchell G, Pfeffer M, Neaton JD, Norman J, Svendsen K, et al. Pulse pressure and cardiovascular disease-related mortality: Follow-up study of the multiple risk factor intervention trial (MRFIT). JAMA 2002;287:2677-83.
68. Dunger DB, Sperling MA, Acerini CL, Bohn DJ, Daneman D, Danne TP, et al. ESPE/LWPES consensus statement on diabetic ketoacidosis in children and adolescents. Arch Dis Child 2004;89:188-94.
69. Rewers A, Chase HP, Mackenzie T, Walravens P, Roback M, Rewers M, et al. Predictors of acute complications in children with Type 1 diabetes. JAMA 2002;287:2511-8.
70. Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 2007;87:507-20.
71. Boden G, Cheung P, Stein TP. A recent focusing on studies of lipid effects on insulin resistance in human subjects. Review role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997;46:3-10.
72. Kelley DE, Mokan M, Simoneau JA, Mandarino LJ. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest 1993;92:91-8.
73. Oakes ND, Bell KS, Furler SM, Camilleri S, Saha AK, Ruderman NB, et al. Diet-induced muscle insulin resistance in rats is ameliorated by acute dietary lipid withdrawal or a single bout of exercise: Parallel relationship between insulin stimulation of glucose uptake and suppression of long-chain fatty acyl-CoA. Diabetes 1997;46:2022-8.
74. Goodpaster BH, Thaete FL, Simoneau JA, Kelley DE. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes 1997;46:1579-85.
75. Perseghin G, Scifo P, De Cobelli F, Pagliato E, Battezzati A, Arcelloni C, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: A 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of Type 2 diabetic parents. Diabetes 1999;48:1600-6.
76. Krssak M, Falk Petersen K, Dresner A, DiPietro L, Vogel SM, Rothman DL, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: A 1H NMR spectroscopy study. Diabetologia 1999;42:113-6.
77. Szczepaniak LS, Babcock EE, Schick F, Dobbins RL, Garg A, Burns DK, et al. Measurement of intracellular triglyceride stores by H spectroscopy: Validation in vivo. Am J Physiol 1999;276:E977-89.
78. Senn JJ. Toll-like receptor-2 is essential for the development of palmitate-induced insulin resistance in myotubes. J Biol Chem 2006;281:26865-75.
79. Song MJ, Kim KH, Yoon JM, Kim JB. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun 2006;346:739-45.
80. Suganami T, Tanimoto-Koyama K, Nishida J, Itoh M, Yuan X, Mizuarai S, et al. Role of the toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 2007;27:84-91.
81. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006;116:3015-25.
82. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, et al. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 2007;56:1986-98.
83. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest 2000;106:473-81.
84. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988;37:1595-607.
85. Ginsberg HN. Insulin resistance and cardiovascular disease. J Clin Invest 2000;106:453-8.
86. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006;444:847-53.
87. Kalderon B, Mayorek N, Berry E, Zevit N, Bar-Tana J. Fatty acid cycling in the fasting rat. Am J Physiol Endocrinol Metab 2000;279:E221-7.
88. Smith RE, Horwitz BA. Brown fat and thermogenesis. Physiol Rev 1969;49:330-425.
89. Christianson JL, Nicoloro S, Straubhaar J, Czech MP. Stearoyl-CoA desaturase 2 is required for peroxisome proliferator-activated receptor gamma expression and adipogenesis in cultured 3T3-L1 cells. J Biol Chem 2008;283:2906-16.
90. Frayn KN, Shadid S, Hamlani R, Humphreys SM, Clark ML, Fielding BA, et al. Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. Am J Physiol 1994;266:E308-17.
91. Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: Many choices on the menu. Genes Dev 2007;21:1443-55.
92. Rajala MW, Scherer PE. Minireview: The adipocyte at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 2003;144:3765-73.
93. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004;89:2548-56.
94. Søvik O, Vestergaard H, Trygstad O, Pedersen O. Studies of insulin resistance in congenital generalized lipodystrophy. Acta Paediatr Suppl 1996;413:29-37.
95. Moitra J, Mason MM, Olive M, Krylov D, Gavrilova O, Marcus- Samuels B, et al. Life without white fat: A transgenic mouse. Genes Dev 1998;12:3168-81.
96. Laustsen PG, Michael MD, Crute BE, Cohen SE, Ueki K, Kulkarni RN, et al. Lipoatrophic diabetes in Irs1(-/-)/Irs3(-/-) double knockout mice. Genes Dev 2002;16:3213-22.
97. Shimomura I, Hammer RE, Richardson JA, Ikemoto S, Bashmakov Y, Goldstein JL, et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: Model for congenital generalized lipodystrophy. Genes Dev 1998;12:3182-94.
98. Gregg RE, Brewer HB Jr. The role of apolipoprotein E and lipoprotein receptors in modulating the in vivo metabolism of apolipoprotein B-containing lipoproteins in humans. Clin Chem 1988;34:B28-32.
99. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992;258:468-71.
100. Mahley RW. Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Science 1988;240:622-30.
101. Miyata M, Smith JD. Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat Genet 1996;14:55-61.
102. Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 1992;71:343-53.
103. Blum CB. Dynamics of apolipoprotein E metabolism in humans. J Lipid Res 1982;23:1308-16.
104. Schaefer EJ, Gregg RE, Ghiselli G, Forte TM, Ordovas JM, Zech LA, et al. Familial apolipoprotein E deficiency. J Clin Invest 1986;78:1206-19.
105. Gregg RE, Zech LA, Schaefer EJ, Brewer HB Jr., Type III hyperlipoproteinemia: Defective metabolism of an abnormal apolipoprotein E. Science 1981;211:584-6.
106. Mensenkamp AR, Jong MC, van Goor H, van Luyn MJ, Bloks V, Havinga R, et al. Apolipoprotein E participates in the regulation of very low density lipoprotein-triglyceride secretion by the liver. J Biol Chem 1999;274:35711-8.
107. Havel RJ, Kane JP, Kashyap ML. Interchange of apolipoproteins between chylomicrons and high density lipoproteins during alimentary lipemia in man. J Clin Invest 1973;52:32-8.
108. Jeppesen J, Hollenbeck CB, Zhou MY, Coulston AM, Jones C, Chen YD, et al. Relation between insulin resistance, hyperinsulinemia, postheparin plasma lipoprotein lipase activity, and postprandial lipemia. Arterioscler Thromb Vasc Biol 1995;15:320-4.
109. Lin CY, Duan H, Mazzone T. Apolipoprotein E-dependent cholesterol efflux from macrophages: Kinetic study and divergent mechanisms for endogenous versus exogenous apolipoprotein E. J Lipid Res 1999;40:1618-27.
110. Paka L, Kako Y, Obunike JC, Pillarisetti S. Apolipoprotein E containing high density lipoprotein stimulates endothelial production of heparan sulfate rich in biologically active heparin-like domains. A potential mechanism for the anti-atherogenic actions of vascular apolipoprotein e. J Biol Chem 1999;274:4816-23.
111. Riddell DR, Graham A, Owen JS. Apolipoprotein E inhibits platelet aggregation through the L-arginine: Nitric oxide pathway. Implications for vascular disease. J Biol Chem 1997;272:89-95.
112. Bach-Ngohou K, Nazih H, Nazih-Sanderson F, Zaïr Y, Le Carrer D, Krempf M, et al. Negative and independent influence of apolipoprotein E on C-reactive protein (CRP) concentration in obese adults. Potential anti-inflammatory role of apoE in vivo. Int J Obes Relat Metab Disord 2001;25:1752-8.
113. Howard BV. Lipoprotein metabolism in diabetes mellitus. J Lipid Res 1987;28:613-28.
114. Garvey WT, Garber AJ, Mechanick JI, Bray GA, Dagogo-Jack S, Einhorn D, et al. American association of clinical endocrinologists and american college of endocrinology position statement on the 2014 advanced framework for a new diagnosis of obesity as a chronic disease. Endocr Pract 2014;20:977-89.
115. Harris MI, Zimmet P. Classification of Mellitus and other categories of glucose intolerance. In: Alberti KG, DeFronzo RA, Zimmet PH, editors. International Textbook of Diabetes Mellitus. Chichester, England: John Willy and Sons; 1992. p. 3-18.
116. Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, et al. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 2005;54:1926-33.
117. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003;34:267-73.
118. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 2003;46:3-19.
119. Clee SM, Attie AD. The genetic landscape of Type 2 diabetes in mice. Endocr Rev 2007;28:48-83.
120. Rhodes CJ. Type 2 diabetes-a matter of beta-cell life and death? Science 2005;307:380-4.
121. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1.Proc Natl Acad Sci U S A 2003;100:8466-71.
122. Patti ME, Kahn BB. Nutrient sensor links obesity with diabetes risk. Nat Med 2004;10:1049-50.
123. Tremblay F, Krebs M, Dombrowski L, Brehm A, Bernroider E, Roth E, et al. Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 2005;54:2674-84.
124. Sims EA, Danforth E Jr, Horton ES, Bray GA, Glennon JA, Salans LB. Endocrine and metabolic effects of experimental obesity in man. Recent Prog Horm Res 1973;29:457-96.
125. Freidenberg GR, Reichart D, Olefsky JM, Henry RR. Reversibility of defective adipocyte insulin receptor kinase activity in non-insulin-dependent diabetes mellitus. Effect of weight loss. J Clin Invest 1988;82:1398-406.
126. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with Type 2 diabetes. Diabetes 2003;52:102-10.
127. Costeas PA, Chinsky JM. Effects of insulin on the regulation of branched-chain alpha-keto acid dehydrogenase E1 alpha subunit gene expression. Biochem J 1996;318 (Pt 1):85-92.
128. Lackey DE, Lynch CJ, Olson KC, Mostaedi R, Ali M, Smith WH, et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am J Physiol Endocrinol Metab 2013;304:E1175-87.
129. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009;9:311-26.
130. Shah SH, Crosslin DR, Haynes CS, Nelson S, Turer CB, Stevens RD, et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 2012;55:321-30.
131. McCormack SE, Shaham O, McCarthy MA, Deik AA, Wang TJ, Gerszten RE, et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes 2013;8:52-61.
132. Würtz P, Soininen P, Kangas AJ, Rönnemaa T, Lehtimäki T, Kähönen M, et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 2013;36:648-55.
133. Tai ES, Tan ML, Stevens RD, Low YL, Muehlbauer MJ, Goh DL, et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010;53:757-67.
134. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med 2011;17:448-53.
135. Magnusson M, Lewis GD, Ericson U, Orho-Melander M, Hedblad B, Engström G, et al. A diabetes-predictive amino acid score and future cardiovascular disease. Eur Heart J 2013;34:1982-9.
136. Würtz P, Mäkinen VP, Soininen P, Kangas AJ, Tukiainen T, Kettunen J, et al. Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes 2012;61:1372-80.
137. Yamada C, Kondo M, Kishimoto N, Shibata T, Nagai Y, Imanishi T, et al. Association between insulin resistance and plasma amino acid profile in non-diabetic Japanese subjects. J Diabetes Investig 2015;6:408-15.
138. Martin FP, Montoliu I, Collino S, Scherer M, Guy P, Tavazzi I, et al. Topographical body fat distribution links to amino acid and lipid metabolism in healthy obese women [corrected]. PLoS One 2013;8:e73445.
139. Wang-Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y, et al. Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 2012;8:615.
140. Yamakado M, Tanaka T, Nagao K, Imaizumi A, Komatsu M, Daimon T, et al. Plasma amino acid profile associated with fatty liver disease and co-occurrence of metabolic risk factors. Sci Rep 2017;7:14485.
141. Mäntyselkä P, Niskanen L, Kautiainen H, Saltevo J, Würtz P, Soininen P, et al. Cross-sectional and longitudinal associations of circulating omega-3 and omega-6 fatty acids with lipoprotein particle concentrations and sizes: Population-based cohort study with 6-year follow-up. Lipids Health Dis 2014;13:28.
142. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 2000;106:171-6.
143. Biddinger SB, Kahn CR. From mice to men: Insights into the insulin resistance syndromes. Annu Rev Physiol 2006;68:123-58.
144. Bastie C, Luquet S, Holst D, Jehl-Pietri C, Grimaldi PA. Alterations of peroxisome proliferator-activated receptor delta activity affect fatty acid-controlled adipose differentiation. J Biol Chem 2000;275:38768-73.
145. Leibowitz MD, Fiévet C, Hennuyer N, Peinado-Onsurbe J, Duez H, Bergera J, et al. Activation of PPARdelta alters lipid metabolism in db/ db mice. FEBS Lett 2000;473:333-6.
146. Oliver WR Jr., Shenk JL, Snaith MR, Russell CS, Plunket KD, Bodkin NL, et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A 2001;98:5306-11.
Statistics
92 Views | 54 Downloads
Citatons
How to Cite
P, D. J., D. P. KUMAR N, V. M. A, and R. A. “ALTERATIONS OF LIPID LEVELS MAY INDUCE THE INSULIN RESISTANCE IN TYPE TWO DIABETES MELLITUS: A SYSTEMIC REVIEW”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 13, no. 3, Jan. 2020, pp. 9-20, doi:10.22159/ajpcr.2020.v13i3.36672.
Section
Review Article(s)