A REVIEW ON PHARMACOLOGY AND THERAPEUTIC EFFECTS OF EMPAGLIFLOZIN IN PATIENTS WITH TYPE 2 DIABETES MELLITUS

  • AJAY CHADEVE Department of Pharmacy Practice, Sree Vidyanikethan College of Pharmacy, Tirupati, Andhra Pradesh, India.

Abstract

Empagliflozin, a sodium glucose cotransporter 2 inhibitor, a newer class of antihyperglycemic agent, which offers the convenience of once-daily oral administration and carries a low inherent risk of hypoglycemia as a result of its unique mechanism of action, enabling it to be used as monotherapy and as an adjunct with other antidiabetic drugs. Empagliflozin has a unique mechanism of action by inhibiting glucose and sodium reabsorption in the proximal tubule of the kidney; they induce urinary glucose excretion and natriuresis. In patients with diabetes, empagliflozin results in glucose lowering, blood pressure (BP) reduction and weight loss. Empagliflozin reduced cardiovascular morbidity and mortality in patient with type 2 diabetes mellitus and established cardiovascular disease in the EMPA-REG OUTCOME trial®. The recommended starting dosage of empagliflozin is 10 mg daily. The dosage may be increased to a maximum of 25 mg/day in patients tolerating empagliflozin 10 mg/day. The most common adverse effect observed with empagliflozin (sodium glucose cotransporter 2 inhibitors) is an increment in mycotic genital infections. In this review article, we discussed the pharmacological properties, therapeutic effects, and adverse events that are associated with the administration of empagliflozin in patients with type 2 diabetes mellitus. In conclusion, empagliflozin provides greater therapeutic benefits in the management of type 2 diabetes mellitus and reduce the associated cardiovascular risk factors such as blood pressure (BP) and weight.

Keywords: Empagliflozin, Sodium glucose cotransporter 2 inhibitors, Type 2 diabetes mellitus

References

1. FDA Approves Jardiance (Empagliflozin) Tablets for Adults with Type 2 Diabetes. Eli Lilly and Company; 2014. Available from: https://www. investor.lilly.com/releasedetail.cfm?releaseid=863787. [Last accessed on 2020 Jan 02].
2. FDA Approves Jardiance (Empagliflozin) Tablets for Adults with Type 2 Diabetes. Boehringer Ingelheim; 2014. Available from: http:// www.us.boehringeringelheim.com/news_events/press_releases/ pressreleasearchive/2014/08-01-14-fda-approves-jardianceempagliflozin-tablets-reduce-blood-sugar-levels-adults-type-2-diabetes.html. [Last accessed on 2020 Jan 10].
3. EPAR Summary for the Public: Jardiance. European Medicines Agency. Available from: http://www.ema.europa.eu/docs/en_GB/ document_library/EPAR__Summary_for_the_public/human/002677/ WC500168595.pdf. [Last accessed on 2020 Jan 10].
4. European Medicines Agency. Jardiance 10 and 25 mg Film-coated Tablets: Summary of Product Characteristics; 2014. Available from: http://www.ema.europa.eu. [Last accessed on 2020 Jan 04].
5. Boehringer Ingelheim Pharmaceuticals, Inc. Jardiance® (Empagliflozin) Tablets, for Oral Use. US Prescribinginformation; 2016. Available from: http://www.docs.boehringeringelheim.com/Prescribing%20Information/ PIs/Jardiance/jardiance.pdf. [Last accessed on 2019 Nov 29].
6. Scott LJ. Empagliflozin: A review of its use in patients with Type 2 diabetes mellitus. Drugs 2014;74:1769-84.
7. Chen LZ, Jungnik A, Mao Y, Philip E, Sharp D, Unseld A, et al. Biotransformation and mass balance of the SGLT2 inhibitor empagliflozin in healthy volunteers. Xenobiotica. 2015;45:520-9.
8. Scheen AJ. Pharmacodynamics, efficacy and safety of sodiumglucose co-transporter Type 2 (SGLT2) inhibitors for the treatment of Type 2 diabetes mellitus. Drugs 2015;75:33-59.
9. Heise T, Seewaldt-Becker E, Macha S, Hantel S, Pinnetti S, Seman L, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics following 4 weeks’ treatment with empagliflozin once daily in patients with Type 2 diabetes. Diabetes Obes Metab 2013;15:613-21.
10. Ferrannini E, Muscelli E, Frascerra S, Baldi S, Mari A, Heise T, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in Type 2 diabetic patients. J Clin Invest 2014;124:499-508.
11. Al Jobori H, Daniele G, Adams J, Cersosimo E, Solis-Herrera C, Triplitt C, et al. Empagliflozin treatment is associated with improved beta cell function in T2DM. J Clin Endocrinol Metab 2018;103:1402-7.
12. Riggs MM, Seman LJ, Staab A, MacGregor TR, Gillespie W, Gastonguay MR, et al. Exposure-response modelling for empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in patients with Type 2 diabetes. Br J Clin Pharmacol 2014;78:1407-18.
13. Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with Type 2 diabetes. Diabetes Obes Metab 2015;17:1180-93.
14. Chilton RJ, Gullestad L, Fitchett D. Effects of empagliflozin on cardiac and vascular hemodynamic markers by subgroups of age, sex, and hypertension in patients with T2DM and high CV risk: EMPA-reg outcome. Diabetes 2017;66 Suppl 1:A119.
15. Neeland IJ, McGuire DK, Chilton R, Crowe S, Lund SS, Woerle HJ, et al. Empagliflozin reduces body weight and indices of adipose distribution in patients with Type 2 diabetes mellitus. Diab Vasc Dis Res 2016;13:119-26.
16. Neeland IJ, McGuire DK, Fernandez CS. Effect of empagliflozin on anthropometry and indices of visceral and total adiposity in patients with Type 2 diabetes and high cardiovascular risk: EMPA-reg outcome. Diabetologia 2016;59 Suppl 1:S348.
17. Kohler S, Zeller C, Iliev H, Kaspers S. Safety and tolerability of empagliflozin in patients with Type 2 diabetes: Pooled analysis of phase I-III clinical trials. Adv Ther 2017;34:1707-26.
18. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in Type 2 diabetes. N Engl J Med 2016;375:323-34.
19. Brown GK. Glucose transporters: Structure, function and consequences of deficiency. J Inherit Metabo Diseases 2000;23:237-46.
20. Lee YJ, Lee YJ, Han HJ. Regulatory mechanisms of Na+/glucose cotransporters in renal proximal tubule cells. Kidney Int Suppl 2007;106:S27-35.
21. Rang HP, Ritter JM, Flower RJ, Henderson G. Rang and Dale’s Pharmacology. 8th ed. London, United Kingdom: Churchill Livingstone; 2015.
22. Poudel RR. Renal glucose handling in diabetes and sodium glucose cotransporter 2 inhibition. Indian J Endocrinol Metabo 2013;17:588-93.
23. Kaplan JH. Biochemistry of Na, K-ATPase. Annu Rev Biochem 2002;71:511-35.
24. Abdul-Ghani MA, DeFronzo RA, Norton L. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load. Diabetes 2013;62:3324-8.
25. Ferrannini E. Sodium-glucose co-transporters and their inhibition: Clinical physiology. Cell Metab 2017;26:27-38.
26. Ferrannini E, Solini A. SGLT2 inhibition in diabetes mellitus: Rationale and clinical prospects. Nat Rev Endocrinol 2012;8:495-502.
27. Heerspink HJ, Perkins BA, Fitchett DH. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: Cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 2016;134:752-72.
28. Kramer CK, Zinman B. Sodium-glucose co-transporter-2 (SGLT-2) inhibitors in patients with Type 2 diabetes mellitus: The road ahead. Eur Heart J 2016;37:3201-2.
29. Liu JJ, Lee T, DeFronzo RA. Why do SGLT2 inhibitors inhibit only 30-50% of renal glucose reabsorption in humans? Diabetes 2012;61:2199-204.
30. Komoroski B, Vachharajani N, Boulton D. Dapagliflozi, a novel SGLT2 inhibitor, induces dose dependent glucosuria in healthy subjects. ClinPharmacol Ther 2009;85:520-6.
31. Grempler R, Thomas L, Eckhardt M, Himmelsbach F, Sauer A, Sharp DE, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: Characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab 2012;14:83-90.
32. Mudaliar S, Polidori D, Zambrowicz B, Henry RR. Sodium-glucose cotransporter inhibitors: Effects on renal and intestinal glucose transport: From bench to bedside. Diabetes Care 2015;38:2344-53.
33. Clar C, Gill JA, Court R, Waugh N. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in Type 2 diabetes. BMJ Open 2012;2:e001007.
34. Musso G, Gambino R, Cassader M, Pagano G. A novel approach to control hyperglycemia in Type 2 diabetes: Sodium glucose co-transport (SGLT) inhibitors: Systematic review and meta-analysis of randomized trials. Ann Med 2012;44:375-93.
35. Stenlof K, Cefalu WT, Kim KA. Efficacy and safety of canagliflozin monotherapy in subjects with Type 2 diabetes mellitus in adequately controlled with diet and exercise. Diabetes Obes Metab 2013;5:372-82.
36. Rosenstock J, Jelaska A, Frappin G, Salsali A, Kim G, Woerle HJ, et al. Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled Type 2 diabetes. Diabetes Care 2014;37:1815-23.
37. Ridderstråle M, Andersen KR, Zeller C, Kim G, Woerle HJ, Broedl UC, et al. Comparison of empagliflozin and glimepiride as add on to metformin in patients with Type 2 diabetes: A 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol 2014;2:691-700.
38. Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. Sodium-glucose cotransporter 2 inhibitors for Type 2 diabetes: A systematic review and meta-analysis. Ann Intern Med 2013;159:262-74.
39. Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with Type 2 diabetes and chronic kidney disease: A randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2014;2:369-84.
40. Shyangdan DS, Uthman OA, Waugh N. SGLT-2 receptor inhibitors for treating patients with Type 2 diabetes mellitus: A systematic review and network meta-analysis. BMJ Open 2016;6:e00941.
41. Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in Type 2 diabetes mellitus: Systematic review and network meta-analysis. Diabetes Obes Metab 2016;18:783-94.
42. Zhang L, Feng Y, List J, Kasichayanula S, Pfister M. Dapagliflozin treatment in patients with different stages of Type 2 diabetes mellitus: Effects on glycemic control and body weight. Diabetes Obes Metab 2010;12:510-16.
43. Liu XY, Zhang N, Chen R. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors in Type 2 diabetes: A meta-analysis of randomized controlled trials for 1 to 2 years. J Diabetes Complications 2015;29:1295-303.
44. Mazidi M, Rezaie P, Gao HK, Kengne AP. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with Type 2 diabetes mellitus: A systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc 2017;6:e00400.
45. Baker WL, Buckley LF, Kelly MS, Bucheit JD, Parod ED, Brown R, et al. Effects of sodium-glucose cotransporter 2 inhibitors on 24 hour ambulatory blood pressure: A systematic review and meta-analysis. J Am Heart Assoc 2017;6:e005686.
46. Zhao Y, Xu L, Tian D, Xia P, Zheng H, Wang L, et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials. Diabetes Obes Metab 2018;20:458-62.
47. Kramer CK, von Mühlen D, Jassal SK, Barrett-Connor E. A prospective study of uric acid by glucose tolerance status and survival: The Rancho Bernardo study. J Intern Med 2010;267:561-66.
48. Kramer CK, von Muhlen D, Jassal SK. Serum uric acid levels improve prediction of incident Type 2 diabetes in individuals with impaired fasting glucose: The Rancho Bernardo Study. Diabetes Care 2009;32:1272-73.
49. Bonner C, Kerr-Conte J, Gmyr V, Queniat G, Moerman E, Thévenet J, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med 2015;21:512-17.
50. Polidori D, Sha S, Mudaliar S, Ciaraldi TP, Ghosh A, Vaccaro N, et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: Results of a randomized, placebo-controlled study. Diabetes Care 2013;36:2154-61.
51. Merovci A, Solis-Herrera C, Daniele G, Eldor R, Fiorentino TV, Tripathy D, et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Invest 2014;124:509-14.
52. Cefalu WT, Leiter LA, Yoon KH, Arias P, Niskanen L, Xie J, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with Type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 2013;382:941-50.
53. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in Type 2 diabetes. N Engl J Med 2015;373:2117-28.
54. de Leeuw AE, de Boer R. Sodium-glucose cotransporter 2 inhibition: Cardioprotection by treating diabetes-a translational viewpoint explaining its potential salutary effects. Eur Heart J Cardiovasc Pharmacother 2016;2:244-55.
Statistics
84 Views | 123 Downloads
Citatons
How to Cite
CHADEVE, A. “A REVIEW ON PHARMACOLOGY AND THERAPEUTIC EFFECTS OF EMPAGLIFLOZIN IN PATIENTS WITH TYPE 2 DIABETES MELLITUS”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 13, no. 5, Mar. 2020, pp. 16-21, doi:10.22159/ajpcr.2020.v13i5.36838.
Section
Review Article(s)