PHENOLIC COMPOUNDS FROM INDONESIAN WHITE TURMERIC (CURCUMA ZEDOARIA) RHIZOMES

Authors

  • DYAH UTAMI CAHYANING RAHAYU Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia.
  • DWI AYU SETYANI Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia.
  • HANHAN DIANHAR Chemistry Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta 13220, Indonesia.
  • PURWANTININGSIH SUGITA Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor, Dramaga Bogor 16680, Indonesia.

DOI:

https://doi.org/10.22159/ajpcr.2020.v13i7.38249

Keywords:

Curcuma zedoaria, Dimethoxycurcumin (DiMC, 1), Phenolic, 7-methoxy coumarin (herniarin, 3), Nil, White turmeric

Abstract

Objective: The aim of the present study is to isolate phenolic compounds from Curcuma zedoaria rhizomes grown in Bogor, West Java, Indonesia, which will enrich phytochemical information from this plant.

Methods: C. zedoaria rhizomes were macerated in methanol then followed by increasing polarity partitions with n-hexane, ethyl acetate (EtOAc), and methanol, respectively. EtOAc fraction was further fractionated using various chromatography techniques to yield two isolated fractions, Z1 and Z2. These two isolated fractions were then characterized to determine their compound structures.

Results: According to Fourier transform-infrared, ultraviolet-vis, and liquid chromatography–mass spectrometry (MS)/MS data, Z1 fraction was elucidated as curcuminoid derivative, that is, dimethoxycurcumin (DiMC, 1), while Z2 fraction was yielded as a mixture consisted of flavonoid and coumarin derivatives, that is, 3,5,7-trihydroxy-4’-methoxyflavon (kaempferide, 2) and 7-methoxy coumarin (herniarin, 3).

Conclusion: This study reveals useful information regarding phenolic constituents of Indonesian C. zedoaria rhizomes. Further research needs to be carried out to purify other compounds contained and to conduct bioactivity assays.

Downloads

Download data is not yet available.

References

Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules 2016;21:559.

Lobo R, Prabhu KS, Shirwaikar A, Shirwaikar A. Curcuma zedoaria Rosc. (White turmeric): A review of its chemical, pharmacological and ethnomedicinal properties. J Pharm Pharmacol 2009;61:13-21.

Ji S, Fattahi A, Raffel N, Hoffmann I, Beckmann MW, Dittrich R, et al. Antioxidant effect of aqueous extract of four plants with therapeutic potential on gynecological diseases; Semen persicae, Leonurus cardiaca, Hedyotis diffusa, and Curcuma zedoaria. Eur J Med Res 2017;22:50.

Singh P, Singh S, Kapoor IP, Singh G, Isidorov V, Szczepaniak L. Chemical composition and antioxidant activities of essential oil and oleoresins from Curcuma zedoaria rhizomes, part-74. Food Biosci 2013;3:42-8.

Rajkumari S, Sanatombi K. Nutritional value, phytochemical composition, and biological activities of edible Curcuma species: A review. Int J Food Prop 2017;20 Suppl 3:S2668-87.

Dosoky NS, Setzer WN. Chemical composition and biological activities of essential oils of Curcuma species. Nutrients 2018;10:1196.

Park GG, Eun SH, Shim SH. Chemical constituents from Curcuma zedoaria. Biochem Syst Ecol 2012;40:65-8.

Zhang Y, Tan X, Tu X, Ling F, Wang G. Efficacy and antiparasitic mechanism of curdione from Curcuma zedoaria Curcuma zedoaria against Gyrodactylus kobayashii in goldfish. Aquaculture 2020;523:735186.

Lee TK, Trinh TA, Lee SR, Kim S, So HM, Moon E, et al. Bioactivity-based analysis and chemical characterization of anti-inflammatory compounds from Curcuma zedoaria rhizomes using LPS-stimulated RAW264.7 cells. Bioorg Chem 2019;82:26-32.

De B, Karak S, Das S, Begum S, Gupta P, Pradhan ID, et al. Profiling non-polar terpenes of rhizomes for distinguishing some Indian Curcuma species. J Appl Res Med Aromat Plants 2019;13:100207.

Rahayu DU, Adilah SN, Sugita P. Antioxidant activity of methanol extract from Indonesian Curcuma heyneana rhizome. Eur J Pharm Med Res 2018;5:582-8.

Sugita P, Octaviana N, Wukirsari T, Rahayu DU. Chemical constituent and antioxidant activity of methanol extract from Indonesian Curcuma aeruginosa Roxb. rhizome. J Pharm Res 2018;12:293-7.

Rahayu DU, Hartono, Sugita P. Antibacterial activity of curcumenol from rhizomes of Indonesian Curcuma aeruginosa (Zingiberaceae). Rasayan J Chem 2018;11:762-5.

Sugita P, Firdaus SO, Ilmiawati A, Rahayu DU. Curcumenol: A guaiane-type sesquiterpene from Indonesian Curcuma Heyneana rhizome and it’s antibacterial activity towards Staphylococcus aureus and Escherichia coli. J Chem Pharm Res 2018;10:68-75.

Purwantiningsih, Hartono, Firdaus SO, Kurniawanti, Rahayu DU, Nurhayati L, et al. Sesquiterpenes from Indonesian of Curcuma aeruginosa rhizome and its antibacterial activities. Drug Invent Today 2019;11:386-90.

Rahayu DU, Nurfadhilah D, Sugita P. Phytochemical study of Indonesian Curcuma rotunda rhizome and its antioxidant activity towards 1,1-diphenyl-2-picrylhydrazyl (DPPH). Int J Pharm Sci Res 2019;10:33548.

Purwantiningsih, Jannah N, Rahayu DU. Two flavanones from finger-root (Curcuma rotunda) and its antibacterial activities. Rasayan J Chem 2020;13:322-6.

Jung EB, Trinh TA, Lee TK, Yamabe N, Kang KS, Song JH, et al. Curcuzedoalide contributes to the cytotoxicity of Curcuma zedoaria rhizomes against human gastric cancer AGS cells through induction of apoptosis. J Ethnopharmacol 2018;213:48-55.

Lee TK, Lee D, Lee SR, Ko YK, Kang KS, Chung SJ, et al. Sesquiterpenes from Curcuma zedoaria rhizomes and their cytotoxicity against human gastric cancer AGS cells. Bioorg Chem 2019;87:117-122.

Saranraj P, Behera SS, Ray RC. Traditional foods from tropical root and tuber crops: Innovations and challenges. In: Galanakis CM, editor. Innovations in Traditional Foods. 1st ed., Ch. 7. Netherlands: Elsevier Inc.; 2019. p. 159-91.

Kadam PV, Yadav KN, Bhingare CL, Patil MJ. Standardization and quantification of curcumin from Curcuma longa extract using UV visible spectroscopy and HPLC. J Pharmacogn Phytochem 2018;7:1913-8.

Arrue L, Barra T, Camarada MB, Zarate X, Schott E. Electrochemical and theoretical characterization of the electro-oxidation of dimethoxycurcumin. Chem Phys Lett 2017;677:35-40.

Markatou E, Gionis V, Chryssikos GD, Hatziantoniou S, Georgopoulos A, Demetzos C, Molecular interactions between dimethoxycurcumin and Pamam dendrimer carriers. Int J Pharm 2007;339:231-6.

Zhou H, Liu Y, Lv L, Wang W, Hu H, Yang L, et al. Design and evaluation of a solid dispersion and thermosensitive hydrogel combined local delivery system of dimethoxycurcumin. J Drug Deliv Sci Tec 2019;53:101150.

Zanetti TA, Biazi BI, Coatti GC, Baranoski A, Marques LA, Corveloni, AC, et al. Mitotic spindle defects and DNA damage induced by dimethoxycurcumin lead to an intrinsic apoptosis pathway in HepG2/C3A cells. Toxicol In Vitro 2019;61:104643.

Jayakumar S, Patwardhan RS, Pal D, Sharma D, Sandur SK. Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase. Biochem Bioph Res Co 2016;478:446-54.

Benediktsdottie BE, Baldursson O, Gudjonsson T, Tonnesen HH, Masson M. Curcumin, bisdemethoxycurcumin and dimethoxycurcumin complexed with cyclodextrins have structure specific effect on the paracellular integrity of lung epithelia in vitro. Biochem Biophys 2015;4:405-10.

Syu WJ, Shen CC, Don MJ, Ou JC, Lee GH, Sun CM. Cytotoxicity of curcuminoids and some novel compounds from Curcuma zedoaria. J Nat Prod 1998;61:1531-4.

Nong HV, Hung LX, Thang PN, Chinh VD, Vu LV, Dung PT, et al. Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma longa) rhizomes of the Northern Vietnam. Springerplus 2016;5:1147.

Kulkarni SJ, Maske KN, Budre MP, Mahajan RP. Extraction and purification of curcuminoids from Turmeric (Curcuma longa L.). Int J Pharmacol Pharm Tech 2012;1:81-4.

Liu F, Bai X, Yang FQ, Zhang XJ, Hu Y, Li P, et al. Discriminating from species of Curcumae Radix (Yujin) by a UHPLC/Q-TOFMS-based metabolomics approach. Chin Med 2016;11:1-11.

Tsimogiannis D, Samiotaki M, Panayotou G, Oreopoulou V. Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS. Molecules 2007;12:593-606.

Gunasekaran S, Abraham L, Mathuram V. UV-visible spectral investigation of Gardenin-A using shift reagents. Asian J Chem 2005;17:2040-2.

Huang L, Feng ZL, Wang YT, Lin LG. Anticancer carbazole alkaloids and coumarins from Clausena plants: A review. Chin J Nat Med 2017;15:881-8.

Machynakova A, Hrobonova K. Simultaneous determination of coumarin derivatives in natural samples by ultra-high performance liquid chromatography. J Food Nutr Res 2017;56:179-88.

Divakaran SA, Hema PS, Nair MS, Nak CK. Antioxidant capacity and radioprotective properties of the flavonoids galangin and kaempferide isolated from Alpinia galanga L. (Zingiberaceae) against radiation induced cellular DNA damage. Int J Radiat Res 2013;11:81-9.

Hamed MM, Mohamed MA, Ibrahim MT. Cytotoxic activity assesment of secondary metabolites from Tecomaria capensis v. aurea. Int J Pharmacogn Phytochem Res 2016;8:1173-82.

Lefahal M, Zaabat N, Djarri L, Benahmed M, Medjroubi K, Laouer H, et al. Evaluation of the antioxidant activity of extracts and flavonoids obtained from Bunium alpinum Waldst. and Kit. (Apiaceae) and Tamarix gallica L. (Tamaricaceae). Curr Issues Pharm Med Sci 2017;30:5-8.

Ahmad A, Misra LN. Isolation of herniarin and other constituents from Matricaria chamomilla flowers. Int J Pharmacogn 1997;35:121-5.

Tine Y, Diop A, Diatta W, Desjobert JM, Boye CS, Costa J, et al. Chemical diversity and antimicrobial activity of volatile compounds from Zanthoxylum zanthoxyloides Lam. according to compound classes, plant organs and Senegalese sample locations. Chem Biodivers 2017;14:1-37.

Kong LY, Qin MJ, Niwa M. New cytotoxic bis-labdanic diterpenoids from Alpinia calcarata. Planta Med 2002;68:813-7.

Published

07-07-2020

How to Cite

DYAH UTAMI CAHYANING RAHAYU, DWI AYU SETYANI, HANHAN DIANHAR, and PURWANTININGSIH SUGITA. “PHENOLIC COMPOUNDS FROM INDONESIAN WHITE TURMERIC (CURCUMA ZEDOARIA) RHIZOMES”. Asian Journal of Pharmaceutical and Clinical Research, vol. 13, no. 7, July 2020, pp. 194-8, doi:10.22159/ajpcr.2020.v13i7.38249.

Issue

Section

Original Article(s)