CLINICAL MANIFESTATION AND PATHOGENESIS OF NERVOUS SYSTEM INVOLVEMENT IN SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS-2 INFECTION

  • VALENTINA TJANDRA DEWI Department of Neurology, Faculty of Medicine Udayana University, Sanglah General Hospital, Denpasar, Bali, Indonesia. https://orcid.org/0000-0001-5312-9201
  • ANAK AGUNG AYU PUTRI LAKSMIDEWI Department of Neurology, Faculty of Medicine Udayana University, Sanglah General Hospital, Denpasar, Bali, Indonesia. https://orcid.org/0000-0002-6372-2399
  • KETUT AYU SUDIARIANI Department of Neurology, Tabanan General Regional Hospital, Bali, Indonesia.

Abstract

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) or CoV disease 2019 (COVID-19) infection has spread throughout the world and becomes a global pandemic. Various studies are still ongoing to be able to understand this viral infection in terms of symptomatology, transmission, pathogenesis, its treatment, and prevention. In addition to respiratory symptoms that are commonly reported in SARS-CoV-2 infections, there are many reports of symptoms appearing in other organ systems with one of them being neurological manifestation. The neurological manifestations involve not only the central and peripheral nervous systems but also there was also a suspicion that the potential invasion of SARS-CoV-2 in the nervous system might be able to take part in the occurrence of respiratory failure that is found in patients with COVID-19. The continuity of the study and the awareness of medical personnel from various fields of science must be increased to fight against the COVID-19 pandemic and ensuring optimal treatment for patients.

Keywords: Coronavirus disease-19, Severe acute respiratory syndrome coronavirus-2, Neurological, Nervous, Manifestation

Author Biographies

VALENTINA TJANDRA DEWI, Department of Neurology, Faculty of Medicine Udayana University, Sanglah General Hospital, Denpasar, Bali, Indonesia.

Department of Neurology, Faculty of Medicine Udayana University, Sanglah General Hospital, Bali, Indonesia

ANAK AGUNG AYU PUTRI LAKSMIDEWI, Department of Neurology, Faculty of Medicine Udayana University, Sanglah General Hospital, Denpasar, Bali, Indonesia.

Department of Neurology, Faculty of Medicine Udayana University, Sanglah General Hospital, Bali, Indonesia

KETUT AYU SUDIARIANI, Department of Neurology, Tabanan General Regional Hospital, Bali, Indonesia.

Department of Neurology Tabanan General Regional Hospital, Bali, Indonesia

References

1. WHO. Coronavirus Disease 2019 (COVID-19) Situation Report-94; 2020. Available from: https://www.who.int/docs/default-source/ coronaviruse/situation-reports/20200423-sitrep-94-covid-19. pdf?sfvrsn=b8304bf0_4.
2. PAHO, WHO. Epidemiological Update Novel Coronavirus (COVID-19). Geneva: PAHO, WHO; 2020.
3. Sahin AR, Erdogan A, Agaoglu PM, Dineri Y, Cakirci AY, Senel ME, et al. 2019 Novel coronavirus (COVID-19) outbreak: A review of the current literature. Eurasian J Med Oncol 2020;4:1-7.
4. Ministry of Health Infectious Diseases Protocol. Appendix A: Disease-specific Chapters, Diseases Caused by a Novel Coronavirus, Including Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). New Delhi: Ministry of Health Infectious Diseases Protocol; 2020.
5. Rothana HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020;109:102433.
6. Filatov A, Sharma P, Hindi F, Espinosa PS. Neurological complications of coronavirus disease (COVID-19): Encephalopathy. Cureus 2020;12:e7352.
7. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurological manifestations of hospitalized with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020;77:683-90.
8. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol 2020;92:552-5.
9. Bernstein HG, Dobrowolny H, Keilhoff G, Steiner J. Dipeptidyl peptidase IV, which probably plays important roles in Alzheimer disease (AD) pathology, is upregulated in AD brain neurons and associates with amyloid plaques. Neurochem Int 2018;114:55-7.
10. Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005;202:415-24.
11. McCray PB Jr., Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 2007;81:813-21.
12. Khan S, Ali A, Siddique R, Nabi G. Novel coronavirus is putting the whole world on alert. J Hosp Infect 2020;104:252-3.
13. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019- nCov. BioRxiv 2020;202:756-9.
14. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus: A first step in understanding SARS pathogenesis. J Pathol 2004;203:631-7.
15. Su S, Wong G, Shi W, Liu J, Lai AC, Zhou J, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016;24:490-502.
16. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci 2020;11:995-8.
17. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260-3.
18. Hulswit RJ, de Haan CA, Bosch BJ. Coronavirus spike protein and tropism changes. Adv Virus Res 2016;96:29-57.
19. Glass WG, Subbarao K, Murphy B, Murphy PM. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARSCoV) pulmonary infection of mice. J Immunol 2004;173:4030-39.
20. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061-9.
21. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020;395:507-13.
22. Unni SK, Ruzek D, Chhatbar C, Mishra R, Johri MK, Singh SK. Japanese encephalitis virus: From genome to infectome. Microbes Infect 2011;13:312-21.
23. Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system. Cell Host Microbe 2013;13:379-93.
24. Swanson PA 2nd, McGavern DB. Viral diseases of the central nervous system. Curr Opin Virol 2015;11:44-54.
25. Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dube M, et al. Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses 2019;12:14.
26. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008;82:7264-75.
27. Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. J Pathol 2004;203:622-30.
28. Cardona GC, Pajaro LD, Marzola ID, Villegas YR, Salazar LR. Neurotropism of SARS-cov 2: Mechanisms and manifestations. J Neurol Sci 2020;412:116824.
29. Butowt R, Bilinska K. SARS-cov-2: Olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci 2020;11:1200-3.
30. Vaira LA, Hopkins C, Salzano G, Petrocelli M, Melis A, Cucurullo M, et al. Olfactory and gustatory function impairment in COVID-19 patients: Italian objective multicenter-study. Head Neck 2020;42:1560-9.
31. Sungnak W, Huang N, Becavin C, Berg M, Queen R, Litvinukova M, et al. SARS-cov-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020;26:681-7.
32. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, et al. High expression of ACE2 receptor of 2019-ncov on the epithelial cells of oral mucosa. Int J Oral Sci 2020;12:8.
33. Matsuda K, Park CH, Sunden Y, Kimura T, Ochiai K, Kida H, et al. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice. Vet Pathol 2004;41:101-7.
34. Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LR, et al. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis 2016;213:712-22.
35. Pleasure SJ, Green AJ, Josephson SA. The spectrum of neurologic disease in the severe acute respiratory syndrome coronavirus 2 pandemic infection: Neurologists move to the frontlines. JAMA Neurol 2020;77:679-80.
36. Liu K, Pan M, Xiao Z, Xu X. Neurological manifestations of the coronavirus (SARS-cov-2) pandemic 2019-2020. J Neurol Neurosurg Psychiatry 2020;91:669-70.
37. Ogier M, Andeol G, Sagui E, Bo GD. How to detect and track chronic neurologic sequelae of COVID- 19? Use of auditory brainstem responses and neuroimaging for long-term patient follow-up. Brain Behav Immun Health 2020;5:100081.
38. Bridwell R, Long B, Gottlieb M. Neurologic complications of COVID-19. Am J Emerg Med 2020;38:1549.
39. Li Z, Liu T, Yang N, Han D, Mi X, Li Y, et al. Neurological manifestations of patients with COVID-19: Potential routes of SARS-cov-2 neuroinvasion from the periphery to the brain. Front Med 2020;2020:1-9.
40. Jin H, Hong C, Chen S, Zhou Y, Wang Y, Mao L, et al. Consensus for prevention and management of coronavirus disease 2019 (COVID-19) for neurologists. Stroke Vasc Neurol 2020;5:146-51.
41. Guan W,Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:18.
42. Diagnosis and Treatment of the Novel Coronavirus Pneumonia (Trial Version 7). National Health Commission of the People’s Republic of China; 2020. Available from: http://www.nhc.gov.cn/ yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989/files/ ce3e6945832a438eaae415350a8ce964.Pdf.
43. Heffner KL. Neuroendocrine effects of stress on immunity in the elderly: Implications for inflammatory disease. Immunol Allergy Clin North Am 2011;31:95-108.
44. Spiezia L, Boscolo A, Poletto F, Cerruti L, Tiberio I, Campello E, et al. COVID-19- related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb Haemost 2020;120:998-1000.
45. Jose RJ, Manuel A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir Med 2020;8:e46-7.
46. Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, et al. Neurologic features in severe SARS-cov-2 infection. N Engl J Med 2020;382:2268-70.
47. Lau KK, Yu WC, Chu CM, Lau ST, Sheng B, Yuen KY. Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis 2004;10:342-4.
48. Moriguchi T, Harii N, Goto J, Harada D, Sugarawa H, Takamino J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis 2020;94:55-8.
49. Fotuhi M, Mian A, Meysami S, Raji CA. Neurobiology of COVID-19. J Alzheimer’s Dis 2020;76:3-19.
50. Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 2020;87:18-22.
51. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020;395:1033-4.
52. Xiong M, Liang X, Wei Y. Changes in blood coagulation in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Br J Haematol 2020;189:1050-2.
53. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI. Radiology 2020;296:E119-20.
54. Wong AM, Simon EM, Zimmerman RA, Wang HS, Toh CH, Ng SH. Acute necrotizing encephalopathy of childhood: Correlation of MR findings and clinical outcome. AJNR 2006;27:1919-23.
55. Montalvan V, Lee J, Bueso T, Toledo JD, Rivas K. Neurological manifestations of COVID-19 and other coronavirus infections: A systematic review. Clin Neurol Neurosurg 2020;194:105921.
56. Gutierrez-Ortiz C, Mendez A, Rodrigo-Rey S, San Pedro-Murillo E, Bermejo-Guerrero L, Gordo-Manas R, et al. Miller fisher syndrome and polyneuritis cranialis in COVID-19. Neurology 2020;95:9619.
57. Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, et al. Guillain-Barre syndrome associated with SARS-cov-2. N Engl J Med 2020;382:2574-6.
58. Sedaghat Z, Karimi N. Guillain-Barre syndrome associated with COVID-19 infection: A case report. J Clin Neurosci 2020;76:233-5.
59. Otmani HE, El Moutawakil B, Rafai MA, El Benna N, El Kettani C, Soussi M, et al. Covid-19 and Guillain-Barre syndrome: More than a coincidence? Rev Neurol (Paris) 2020;176:518-9.
60. Zhao H, Shen D, Zhou H, Liu J, Chen S, et al. Guillain-Barre syndrome associated with SARS-CoV-2 infection: Causality or coincidence? Lancet Neurol 2020;19:383-4.
61. Tsai LK, Hsieh ST, Chao CC, Chen YC, Lin YH, Chang SC, et al. Neuromuscular disorders in severe acute respiratory syndrome. Arch Neurol 2004;61:1669-73.
62. Diyya AS, Thomas NV. Potential therapeutic avenues for covid-19 therapy. Int J Pharm Pharm Sci 2020;12:11-4.
63. Khosravani H, Rajendram P, Notario L, Chapman MG, Menon BK. Protected code stroke hyperacute stroke management during the coronavirus disease 2019 (COVID-19) pandemic. Stroke 2020;51:1891-5.
64. Kumari VB, Patil SM, Shirahatti PS, Sujay S, Tejaswini M, Ranganatha LV, et al. The current status and prespectives for the emerging pandemic: Covid-19. Int J Pharm Pharm Sci 2020;12:1-10.
Statistics
44 Views | 39 Downloads
Citatons
How to Cite
DEWI, V. T., A. A. A. P. LAKSMIDEWI, and K. AYU SUDIARIANI. “CLINICAL MANIFESTATION AND PATHOGENESIS OF NERVOUS SYSTEM INVOLVEMENT IN SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS-2 INFECTION”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 13, no. 10, Aug. 2020, pp. 23-28, doi:10.22159/ajpcr.2020.v13i10.39006.
Section
Review Article(s)