• MK Saxena Retired Associate Professor Department of Botany University of Rajasthan
  • N Singh Research Scholar Department of Botany University of Rajasthan
  • S Kumar Research Scholar Department of Botany University of Rajasthan
  • MP Dobhal Retired Associate Professor Department of Chemistry University of Rajasthan
  • S Datta Associate Professor Department of Botany University of Rajasthan



Several biologically active secondary metabolites from aquatic plants have been extracted and identified using modern instrumental biotechniques and used in various ways as flavors, food, additives, coloring agents, nutraceuticals, cosmetics and also as unique source of pharma industries for the discovery or development of new drugs. From algae to aquatic macrophytes belonging to various categories, aquatic plants produce a variety of compounds like polyketides, peptides, alkaloids, flavonoids, phenolic compounds, terpenes, steroids, quinones,  tannins, coumarins and essential oils commercially involving in antibiotic, antiviral, antioxidant, antifouling, anti-inflammatory, anticancer, cytotoxic and antimitotic activities; thus making them a rich source of medicinal compounds.  Moreover, they are comprehensively used in human therapy, veterinary, agriculture, scientific research and in countless areas. Importantly these chemicals are exercised for developing new antimicrobial and cancer drugs. Furthermore, antioxidant molecules in aquatic plants and seaweeds have recently been acknowledged. This review contains a consolidated contemporary document consisting of entire knowledge available on pharmaceutical products of aquatic plants and highlights major differences among secondary metabolites found in aquatic [algae and macrophytes] and terrestrial plants. 


Keywords: Nil

Author Biographies

MK Saxena, Retired Associate Professor Department of Botany University of Rajasthan


N Singh, Research Scholar Department of Botany University of Rajasthan


S Kumar, Research Scholar Department of Botany University of Rajasthan



1. Kurashov EA, Krylova JV, Mitrukova GG and Chernova AM. Low-molecular-weight metabolites of aquatic macrophytes growing on the territory of Russia and their role in hydroecosystems. Contemporary problems of ecology 2014;7(4):433-448.
2. Li YX, Pan YG, He FP, Yuan MQ, Li SB. Pathway analysis and metabolites identification by metabolomics of etiolation substrate from fresh-cut Chinese water chestnut (Eleocharis tuberosa). Molecules 2016;21(12):1648.
3. Wink M. Secondary metabolites: deterring herbivores. e LS. 2001.
4. Piasecka A, Jedrzejczak?Rey N, Bednarek P. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytologist 2015;206(3):948-64.
5. Pagare S, Bhatia M, Tripathi N, Pagare S, Bansal YK. Secondary metabolites of plants and their role: Overview. Current Trends in Biotechnology and Pharmacy 2015;9(3):293-304.
6. Liebelt DJ, Jordan JT, Doherty CJ. Only a matter of time: the impact of daily and seasonal rhythms on phytochemicals. Phytochemistry Reviews 2019;18(6):1409-33.
7. Kurashov EA, Fedorova EV, Krylova JV, Mitrukova GG. Assessment of the potential biological activity of low molecular weight metabolites of freshwater macrophytes with QSAR. Scientifica 2016.
8. Kurashov EA, Mitrukova GG, Krylova JV. Interannual variability of low-molecular metabolite composition in Ceratophyllum demersum (Ceratophyllaceae) from a floodplain lake with a changeable trophic status. Contemporary Problems of Ecology 2018;11(2):179-94.
9. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC. Mechanisms of plant defense against insect herbivores. Plant signaling & behavior 2012;7(10):1306-20.
10. Bartwal A, Mall R, Lohani P, Guru SK, Arora S. Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. Journal of plant growth regulation. 2013;32(1):216-32.
11. Jha Y. Endophytic Bacteria-Mediated Regulation of Secondary Metabolites for the Growth Induction in Hyptis suaveolens Under Stress. In: Medically Important Plant Biomes: Source of Secondary Metabolites 2019 (pp. 277-292). Springer, Singapore.
12. Sparman A. Preliminary outcomes of the use of an antioxidant dietary supplement for patients with or at risk of heart disease. Free Radicals Antioxid 2017;7:152-5.
13. Simpson T, Pase M, Stough C. Bacopa monnieri as an antioxidant therapy to reduce oxidative stress in the aging brain. Evidence-based complementary and alternative medicine 2015;2015.
14. Emsen B, Dogan M. Evaluation of antioxidant activity of in vitro propagated medicinal Ceratophyllum demersum L. extracts. Acta Scientiarum Polonorum-Hortorum Cultus 2018;17(1):23-33.
15. Mannino AM, Vaglica V, Oddo E. Interspecific variation in total phenolic content in temperate brown algae. Journal of Biological Research-Bollettino della Società Italiana di Biologia Sperimentale 2017; 90(1).
16. B?ezinová TD, Vymazal J. Phenolic compounds in wetland macrophytes. Scientia agriculturae bohemica 2018;49(1):1-8.
17. Das B, Pal D, Haldar A. Pharmacognostical and physiochemical study of the aquatic weed Hydrilla verticillata (Lf) Royale known as nutrient power house. International journal of research in pharmacy and science 2015;5(1):1-6.
18. Goud JV, Suryam A, Charya MS. Biomolecular and phytochemical analyses of three aquatic angiosperms. African journal of microbiology research 2009;3(8):418-21.
19. Chaudhary H, Dhuna V, Singh J, Kamboj SS, Seshadri S. Evaluation of hydro-alcoholic extract of Eclipta alba for its anticancer potential: an in vitro study. Journal of ethnopharmacology 2011;136(2):363-7.
20. Abreu AC, McBain AJ, Simoes M. Plants as sources of new antimicrobials and resistance-modifying agents. Natural product reports 2012;29(9):1007-21.
21. Subramanian U, Kishorekumar MS, Muthuraman S, Munusamy AP, Sundaram R. Marine Algal Secondary Metabolites Promising Anti-Angiogenesis Factor against Retinal Neovascularization in CAM Model. Research & Reviews: A Journal of Life Sciences 2018;8(1):19-25.
22. Kumari V, Kaushal K, Sharma AK, Mishra RC, Soni P. Some phytochemicals found in medicinal plants used in cancer-a review. Med Chem (Los Angeles) 2018;8:423-5.
23. Buyel JF. Plants as sources of natural and recombinant anti-cancer agents. Biotechnology advances 2018;36(2):506-20.
24. Ashraf MA. Phytochemicals as Potential Anticancer Drugs: Time to Ponder Nature’s Bounty. BioMed Research International 2020;2020.
25. Rai S, Wahile A, Mukherjee K, Saha BP, Mukherjee PK. Antioxidant activity of Nelumbo nucifera (sacred lotus) seeds. Journal of ethnopharmacology 2006;104(3):322-7.
26. Nagulendran KR, Velavan S, Mahesh R, Begum VH. In vitro antioxidant activity and total polyphenolic content of Cyperus rotundus rhizomes. Journal of Chemistry 2007;4(3):440-9.
27. Shin DJ, Choe J, Hwang KE, Kim CJ, Jo C. Antioxidant effects of lotus (Nelumbo nucifera) root and leaf extracts and their application on pork patties as inhibitors of lipid oxidation, alone and in combination. International Journal of Food Properties 2019;22(1):383-94.
28. Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazon J. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 2016;21(2):182.
29. Luan G, Lu X. Tailoring cyanobacterial cell factory for improved industrial properties. Biotechnology advances 2018;36(2):430-42.
30. Lagunin AA, Goel RK, Gawande DY, Pahwa P, Gloriozova TA, Dmitriev AV, Ivanov SM, Rudik AV, Konova VI, Pogodin PV, Druzhilovsky DS. Chemo-and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review. Natural product reports 2014;31(11):1585-611.
31. Chai TT, Ooh KF, Quah Y, Wong FC. Edible freshwater macrophytes: a source of anticancer and antioxidative natural products-a mini-review. Phytochemistry Reviews 2015;14(3):443-57.
32. Gopal B, editor. Ecology and management of aquatic vegetation in the Indian subcontinent. Springer Science & Business Media; 2016.
33. Hu H, Hong Y. Algal-bloom control by allelopathy of aquatic macrophytes-a review. Frontiers of Environmental Science & Engineering in China 2008;2(4):421-38.
34. Sagehashi M, Kawazoe A, Fujii T, Hu Hy, Sakoda A. Analysis of phosphorus behavior in the giant reed for phytoremediation and the biomass production system. Journal of Water and Environment Technology 2009;7(2):143-54.
35. Choudhary MI, Naheed N, Abbaskhan A, Musharraf SG, Siddiqui H. Phenolic and other constituents of fresh water fern Salvinia molesta. Phytochemistry 2008;69(4):1018-23.
36. Bertoli A, Ruffoni B, Pistelli L, Pistelli L. Analytical methods for the extraction and identification of secondary metabolite production in ‘in vitro’plant cell cultures. InBio-Farms for Nutraceuticals 2010 (pp. 250-266). Springer, Boston, MA.
37. Padial AA, Bini LM, Thomaz SM. The study of aquatic macrophytes in Neotropics: a scientometrical view of the main trends and gaps. Brazilian Journal of Biology 2008;68(4):1051-9.
38. Sculthorpe CD. The biology of aquatic vascular plants. Konigstein 1985.
39. Ananya AK, Ahmad IZ. Cyanobacteria" the blue green algae" and its novel applications: A brief review. International Journal of Innovation and Applied Studies 2014;7(1):251.
40. Leflaive JP, Ten?Hage LO. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biology. 2007 Feb;52(2):199-214.
41. Bajpai VK. Antimicrobial bioactive compounds from marine algae: A mini review. Sciences 2016;45(9):1076-1085
42. Patel A, Mishra S and Ghosh PK. Antioxidant potential of C-phycocyanin isolated from cyanobacterial species Lyngbya, Phormidium and Spirulina spp. Ind J Biochem Biophys 2006;43(1):25-31
43. Zinicovscaia Land Cepoi, L (Eds) (2016) Cyanobacteria for Bioremediation of Wasteeaterd. Springer, Berlin pp124
44. Das S. Microbial Biodegradation and Bioremediation. Elsevier 2014; Science pp 642
45. Costa JA, Morais DMG. The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 2011;102(1):2-9.
46. Landsberg JH. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science 2002;10(2):113-390.
47. Chang TT, More SV, Lu IH, Hsu JC, Chen TJ, Jen YC, Lu CK, Li WS. Isomalyngamide A, A-1 and their analogs suppress cancer cell migration in vitro. European journal of medicinal chemistry 2011;46(9): 3810-9.
48. Nogle LM, Okino T, Gerwick WH. Antillatoxin B, a Neurotoxic Lipopeptide from the Marine Cyanobacterium Lyngbya m ajuscula. Journal of natural products 2001;64(7):983-985.
49. Soria-Mercado IE, Pereira A, Cao Z, Murray TF, Gerwick WH. Alotamide A, a novel neuropharmacological agent from the marine cyanobacterium Lyngbya bouillonii. Organic letters 2009;11(20):4704-7.
50. Sisay MT, Hautmann S, Mehner C, König GM, Bajorath J, Gütschow M. Inhibition of human leukocyte elastase by brunsvicamides A-C: Cyanobacterial cyclic peptides. ChemMedChem: Chemistry Enabling Drug Discovery 2009;4(9):1425-1429.
51. Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC. Marine cyanobacteria-a prolific source of natural products. Tetrahedron 2001;57(46):9347-9377.
52. Barzkar N, Jahromi ST, Poorsaheli HB, Vianello F. Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Marine drugs 2019;17(8):464.
53. Ploutno A, Carmeli S. Nostocyclyne A, a novel antimicrobial cyclophane from the cyanobacterium Nostoc sp. Journal of natural products 2000;63(11):1524-6.
54. Miller MA, Byrne BA, Jang SS, Dodd EM, Dorfmeier E, Harris MD, Ames J, Paradies D, Worcester K, Jessup DA, Miller WA. Enteric bacterial pathogen detection in southern sea otters (Enhydra lutris nereis) is associated with coastal urbanization and freshwater runoff. Veterinary research 2010;41(1): 1-3.
55. Peltomaa E, Johnson MD, Taipale SJ. Marine cryptophytes are great sources of EPA and DHA. Marine drugs 2018;16(1):3.
56. Lin HY, Lin HJ. Polyamines in microalgae: something borrowed, something new. Marine Drugs 2019; 17(1):1.
57. Gaignard C, Gargouch N, Dubessay P, Delattre C, Pierre G, Laroche C, Fendri I, Abdelkafi S, Michaud P. New horizons in culture and valorization of red microalgae. Biotechnology advances 2019;37(1):193-222.
58. Morais MGD, Vaz BDS, Morais EDG. Biologically Active Metabolites Synthesized by Microalgae. BioMed Res Int 2015;15:835761.
59. Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF. Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences 2019;26(4):709-22.
60. Orefice I, Gerecht A, d'Ippolito G, Fontana A, Ianora A, Romano G. Determination of lipid hydroperoxides in marine diatoms by the FOX2 Assay. Marine drugs 2015;13(9):5767-83.
61. Silver MW, Bargu S, Coale SL, Benitez-Nelson CR, Garcia AC, Roberts KJ, Sekula-Wood E, Bruland KW, Coale KH. Toxic diatoms and domoic acid in natural and iron enriched waters of the oceanic Pacific. Proceedings of the National Academy of Sciences 2010;107(48):20762-7.
62. Lefebvre KA, Robertson A. Domoic acid and human exposure risks: a review. Toxicon. 2010;56(2): 218-230.
63. Ferriss BE, Marcinek DJ, Ayres D, Borchert J, Lefebvre KA. Acute and chronic dietary exposure to domoic acid in recreational harvesters: A survey of shellfish consumption behavior. Environment international 2017;101:70-9.
64. Trainer VL, Moore L, Bill BD, Adams NG, Harrington N, Borchert J, Da Silva DA, Eberhart BT. Diarrhetic shellfish toxins and other lipophilic toxins of human health concern in Washington State. Marine Drugs 2013;11(6):1815-35.
65. Pulido OM. Domoic acid toxicologic pathology: a review. Marine Drugs 2008;6(2):180-219.
66. de La Iglesia P, Gago-Martinez A. Determination of yessotoxins and pectenotoxins in shellfish by capillary electrophoresis-electrospray ionization-mass spectrometry. Food Additives and Contaminants 2009;26(2):221-8.
67. Bajaj YPS. Medicinal and Aromatic Plants IX. Springer-Verlag Berlin Heidelberg, Springer 2012; pp 415.
68. Zimba, P.V., Moeller, P.D., Beauchesne, K., Lane, H.E. and Triemer, R.E., 2010. Identification of euglenophycin-A toxin found in certain euglenoids. Toxicon, 55(1), pp.100-104.
69. Hay ME. Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annual review of marine science 2009;1:193.
70. Yuan YV and Walsh NA. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food and chemical toxicology 2006;44(7):1144-50.
71. Shibata T, Nagayama K, Tanaka R, Yamaguchi K, Nakamura T. Inhibitory effects of brown algal phlorotannins on secretory phospholipase A 2 s, lipoxygenases and cyclooxygenases. Journal of Applied Phycology 2003;15(1):61-6.
72. Kuda T, Kunii T, Goto H, Suzuki T, Yano T. Varieties of antioxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto peninsula, Japan. Food chemistry 2007;103(3):900-905.
73. Kumler WE. Evidence against a mechanism of allelopathy in the green alga Chlorodesmis fastigiata. PeerJ Preprints 2017;5:e2700v1.
74. Campbell JE, Craft JD, Muehllehner N, Langdon C, Paul VJ. Responses of calcifying algae (Halimeda spp.) to ocean acidification: implications for herbivores. Marine Ecology Progress Series 2014;514:43-56.
75. Fattahian M, Ghanadian M, Ali Z, Khan IA. Jatrophane and rearranged jatrophane-type diterpenes: biogenesis, structure, isolation, biological activity and SARs (1984–2019). Phytochemistry Reviews 2020;13:1.
76. Hao H, Fu M, Yan R, He B, Li M, Liu Q, Cai Y, Zhang X, Huang R. Chemical composition and immunostimulatory properties of green alga Caulerpa racemosa var peltata. Food and Agricultural Immunology 2019;30(1):937-54.
77. Taskin E, Ozturk M, Kurt O. Antibacterial activities of some marine algae from the Aegean Sea (Turkey). African journal of Biotechnology 2007;6(24):2746-2751.
78. Fitton JH Antiviral properties of marine algae. In: Critchley, A.T., Ohno M, Largo DB (eds) World seaweed resources. Windows and Macintosh. ETI Information Services, Wokingham, UK; 2006. pp. 1-7.
79. Wenli Y, Yaping Z, Bo S. The radical scavenging activities of radix puerariae isoflavonoids: A chemiluminescence study. Food chemistry 2004;86(4):525-529.
80. Kamenarska Z, Dimitrova-Konaklieva S, Stefanov K, Najdenski H, Tzvetkova I, Popov S. Comparative study of the volatile compounds from some Black Sea brown algae. Botanica marina 2002;45(6):502-509.
81. Kristinsson HG. Antioxidants and Functional Components in Aquatic Foods. John Wiley & Sons; 2014. pp 376.
82. Koivikko R, Loponen J, Pihlaja K, Jormalainen V. High?performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques 2007;18(4):326-32.
83. Kim SK ed. Marine Pharmacognosy: Trends and Applications. CRC press; 2012. pp 454.
84. Hellwig V, Gasser J. Polyphenols from waste streams of food industry: valorisation of blanch water from marzipan production. Phytochemistry Reviews 2020;22:1-8.
85. Gupta S, Abu-Ghannam N. Bioactive potential and possible health effects of edible brown seaweeds. Trends in Food Science & Technology 2011;22(6):315-26.
86. Li S, Wang P, Yuan W, Su Z and Bullard SH. Endocidal regulation of secondary metabolites in the producing organisms. Scientific reports 2016; 6(1): 1-17.
87. Li H, Cooke TJ, Korotkov A, Chapman CW, Eastman A, Wu J. Stereoselective synthesis and biological evaluation of C1-epimeric and desmethyl monomeric nuphar analogues. The Journal of Organic Chemistry 2017;82(5):2648-2655.
88. Jormalainen V, Honkanen T. Variation in natural selection for growth and phlorotannins in the brown alga Fucus vesiculosus. Journal of Evolutionary Biology 2004;17(4):807-20.
89. Hemat RAS. Fat and Muscle Dysfunction. in: Hemat, RAS (Eds.), Andropathy Dublin, Ireland: Urotext 2007;83-85.
90. Maruyama H and Yamamoto I. An antitumor fucoidan fraction from edible brown seaweed, Laminaria religiosa. In:Eleventh International Seaweed Symposium, Springer, Dordrecht; 1984 pp. 534-536.
91. Van Weelden G, Bobi?ski M, Ok?a K, Van Weelden WJ, Romano A, Pijnenborg J. Fucoidan structure and activity in relation to anti-cancer mechanisms. Marine drugs 2019; 17(1):32.
92. Aydo &gcaron; mu ? Z, Imre S, Ersoy L, Wray V. Halogenated secondary metabolites from Laurencia obtusa. Natural Product Research 2004;18(1):43-9.
93. Ishii T, Miyagi M, Shinjo Y, Minamida Y, Matsuura H, Abe T, Kikuchi N, Suzuki M. Two new brominated C15-acetogenins from the red alga Laurencia japonensis. Natural Product Research 2019; 26:1-7.
94. Popplewell WL. Isolation and Structure Elucidation of New Secondary Metabolites from New Zealand Marine Red Algae 2008.
95. Ronson TO. Development of cross-coupling routes to macrocyclic polyenes: the first total synthesis of phacelocarpus 2-pyrone A (Doctoral dissertation, University of York).
96. Chandra S, Chandra D, Barh A, Pandey RK, Sharma IP. Bryophytes: Hoard of remedies, an ethno-medicinal review. Journal of traditional and complementary medicine 2017;7(1):94-8.
97. Dey A, Mukherjee A. Therapeutic potential of bryophytes and derived compounds against cancer. Journal of acute disease 2015;4(3):236-48.
98. Tosun A, Süntar ?, Kele? H, Kiremit Hö, Asakawa Y, Akkol Ek. Wound Healing Potential of Selected Liverworts. Turk J Pharm Sci 2016;13(3):285-291.
99. Vierengel A, Kohn G, Vandekerkhove O, Hartmann E. 9-Octadecen-6-ynoic acid from Riccia fluitans. Phytochemistry 1987;26(7):2101-2102
100. Mellegard H, Stalheim T, Hormazabal V, Granum PE, Hardy SP. Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food?borne bacteria. Letters in applied microbiology 2009;49(1):85-90
101. Zaitseva Zaitseva N. A polysaccharide extracted from Sphagnum moss as antifungal agent in archaeological conservation. In Masters Abstracts International 2010; 49(02).
102. Klavina L. Composition of Mosses, their metabolites and Environmental stress Impacts. PhD thesis. University of Latvia, Riga 2018.
103. Asakawa Y. Biologically active compounds from bryophytes. Pure and Applied Chemistry. 2007;79(4):557-80
104. Rasmussen S, Wolff C, Rudolph H. Compartmentalization of phenolic constituents in Sphagnum. Phytochemistry 1995;38(1):35-39.
105. Broudiscou LP, Lassalas B. Effects of Lavandula officinalis and Equisetum arvense dry extracts and isoquercitrin on the fermentation of diets varying in forage contents by rumen microorganisms in batch culture. Reproduction Nutrition Development 2000;40(5):431-440.
106. Talukdar AD, Tarafdar RG, Choudhury MD, Nath D, Choudhury S. A review on pteridophyte antioxidants and their potential role in discovery of new drugs. Assam University Journal of Science and Technology 2011;7(1):151-5.
107. Mithraja MJ, Marimuthu J, Mahesh M, Paul ZM, Jeeva S. Phytochemical studies on Azolla pinnata R. Br., Marsilea minuta L. and Salvinia molesta Mitch. Asian Pacific Journal of Tropical Biomedicine 2011;1(1):526-529
108. De Britto AJ, Gracelin DH, Rathna Kumar PB. Qualitative and quantitative analysis of phytochemicals in Marsilea Minuta (Linn). Internafional Journal of Pharmacy and Biological Sciences 2013;4(1):800-5.
109. Selvi KV, Aruna S, Rajeshkumar S. Analysis of Bioactive metabolites from Azolla pinnata against Dental caries. Research Journal of Pharmacy and Technology 2017;10(6):1891-6.
110. Kumar R. Allelopathic studies of Phragmites karka and Arundo donax. PhD thesis. University of Rajasthan, Jaipur 2009.
111. Xavier GS, Selvaraj P, John N. Impact of phytoecdysone fractions of the ferns Cyclosorous interruptus, Christella dentata and Nephrolepis cordifolia on the biology of Spodoptera litura (Fab.). Journal of Biopesticides 2016;9(2):125.
112. Van der Burg WJ. Ceratopteris thalictroides (L.) Brongn. [Internet] Record from PROTA4U. PROTA (Plant Resources of Tropical Africa/Resources végétales de l’Afrique tropicale), Wageningen; 2004.
113. Kozlowski G, Stoffel M, Bétrisey S, Cardinaux L, Mota M. Hydrophobia of gymnosperms: myth or reality? A global analysis. Ecohydrology 2015;8(1):105-112
114. Tulika T, Mala A. Pharmaceutical potential of aquatic plant Pistia stratiotes (L.) and Eichhornia crassipes. Journal of plant sciences. 2015;3(1-1):10-8.
115. Ayyad SN. A new cytotoxic stigmastane steroid from Pistia stratiotes. Die Pharmazie 2002;57(3):212-4.
116. Dethe UL, Joshi SS, Desai SS, Aparadh VT. Screening of bioactive compounds of Sesbania grandiflora and Pistia stratiotes. Indian J Adv Plant Res 2014;1:27-30.
117. Tyagi T. Phytochemical screening of active metabolites present in Eichhornia Crassipes (Mart.) Solms and Pistia Stratiotes (L.): Role in Ethanomedicine. Asian J Pharma Edu Res 2017;6(4): 40-56.
118. Abraham J, Chakraborty P, Chacko AM, Khare K. Cytotoxicity and antimicrobial effects of Pistia stratiotes leaves. Int J Drug Dev & Res 2014;6(4):208-211.
119. Lotha RO, Sivasubramanian AR. Flavonoids nutraceuticals in prevention and treatment of cancer: A review. Asian J. Pharm. Clin. Res. 2018;11:42-7.
120. Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Büsselberg D. Flavonoids in cancer and apoptosis. Cancers 2019;11(1):28.
121. Tripathi P, Kumar R, Sharma AK, Mishra A, Gupta R. Pistia stratiotes (Jalkumbhi). Pharmacognosy reviews. 2010;4(8):153
122. Khan MA, Marwat KB, Gul B, Wahid F, Khan H, Hashim S. Pistia stratiotes L.(Araceae): Phytochemistry, use in medicines, phytoremediation, biogas and management options. Pakistan Journal of Botany 2014;46(3):851-860.
123. Wu X, Wu H, Chen J and Ye J. Effects of allelochemical extracted from water lettuce (Pistia stratiotes Linn.) on the growth, microcystin production and release of Microcystis aeruginosa. Environmental Science and Pollution Research 2013; 20(11):8192-8201.
124. Aliotta G, Monaco P, Pinto G, Pollio A, Previtera L. Potential allelochemicals from Pistia stratiotes L. Journal of Chemical Ecology 1991;17(11):2223-34.
125. Mulderij G, Mau B, van Donk E, Gross EM. Allelopathic activity of Stratiotes aloides on phytoplankton-towards identification of allelopathic substances. In:Shallow Lakes in a Changing World. Springer, Dordrecht; 2007. pp. 89-100.
126. Jimenez Fonseca AL. Proceso de producción de bioetanol, a partir de la biomasa hidrolizada de la Eichhornia Crassipes con la levadura (Saccharomyces Cerevisiae) 2019.
127. Sandhar HK, Kumar B, Prasher S, Tiwari P, Salhan M, Sharma P. A review of phytochemistry and pharmacology of flavonoids. Internationale pharmaceutica sciencia 2011;1(1):25-41.
128. Nessa A, Sojib SH, Rahman S. Assessment of habitat types and floral species in Tangail, Bangladesh and displayed on to a map using GIS. Bangl J Scien Res 2015;28(1):73-8.
129. Coetzee JA, Hill MP, Ruiz-Téllez T, Starfinger U, Brunel S. Monographs on invasive plants in Europe N° 2: Eichhornia crassipes (Mart.) Solms. Botany Letters 2017;164(4):303-326.
130. Lalitha P, Sripathi SK, Jayanthi P. Secondary metabolites of Eichhornia crassipes (waterhyacinth): a review (1949 to 2011). Nat prod commun 2012;7(9):1934578X1200700939.
131. Thoppil RJ, Bishayee A. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World J Hepatology 2011;3(9):228.
132. Yoo KY, Park SY. Terpenoids as potential anti-Alzheimer’s disease therapeutics. Molecules 2012; 17(3):3524-38.
133. Padgett DJ. A monograph of nuphar (nymphaeaceae) 1. Rhodora 2007;109(937):1-95.
134. Jang DS, Su BN, Pawlus AD, Jones WP, Kleps RA, Bunyapraphatsara N, Fong HH, Pezzuto JM, Kinghorn AD. Limnophilaspiroketone, a Highly Oxygenated Phenolic Derivative from Limnophila g eoffrayi. J nat prod 2005;22;68(7):1134-6.
135. Ozer J, Fishman D, Eilam B, Golan-Goldhirsh A, Gopas J. Anti-metastatic effect of semi-purified Nuphar lutea leaf extracts. J Cancer 2017;8(8):1433.
136. Mukherjee PK, Mukherjee D, Maji AK, Rai S, Heinrich M. The sacred lotus (Nelumbo nucifera)-phytochemical and therapeutic profile. J Pharm Pharmacol 2009;61(4):407-22.
137. Pereira DA, Koelzer J, Dalmarco JB, Pizzolatti MG, Fröde TS. Evaluation of the antiinflammatory efficacy of Lotus pedunculatus. Int J Green Pharm 2009;3(2):105-111
138. Gupta J, Saxena MK. Allelopathic potential of Nymphaea stellata Wild. Nat Environ Pollut Technol 2002;1:435-438.
139. Selvakumari S, Arcot S. Andiabetic activity of Nymphaea pubescens Willd-a plant drug of aquatic flora interest. J Pharm Res 2010;3(12):3067-3069.
140. Prasad KS and Savithramma N. Screening of phytochemical constituents of Nymphaea caerulea Savigny. An Aquatic plant resource for drug development. AJADD 2016;4(4):045-054 .
141. Marquina S, Bonilla-Barbosa J, Alvarez L. Comparative phytochemical analysis of four Mexican Nymphaea species. Phytochemistry 2005;66(8):921-7.
142. Nakai S, Inoue Y, Hosomi M, Murakami A. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Res 2000; 34(11):3026-32.
143. Leu E, Krieger-Liszkay A, Goussias C, Gross EM. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant physiol 2002; 130(4):2011-8.
144. Pollio A, Pinto G, Ligrone R, Aliotta G. Effects of the potential allelochemical ?-asarone on growth, physiology and ultrastructure of two unicellular green algae. J Appl Phycol 1993;5(4):395-403.
145. Hutchinson GE. A treatise on limnology: limnological botany. John Wiley & Sons; 1975.
146. Elakovich SD, Yang J. Structures and allelopathic effects ofNuphar alkaloids: Nupharolutine and 6, 6?-dihydroxythiobinupharidine. J Chem Ecol 1996; 22(12):2209-19.
147. Lu P, Aaron TH and Armen Z. Toward the Synthesis of Nuphar Sesquiterpene Thioalkaloids: Stereo divergent Rhodium-Catalyzed Synthesis of the Thiolane Subunit. J Org Chem 2015; 80(15):7581-7589.
148. Jang DS, Su BN, Pawlus AD, Jones WP, Kleps RA, Bunyapraphatsara N, Fong HH, Pezzuto JM, Kinghorn AD. Limnophilaspiroketone, a Highly Oxygenated Phenolic Derivative from Limnophila geoffrayi. J Nat Prod 2005;68(7):1134-1136.
149. Reddy NP, Reddy BA, Gunasekar D, Blond A, Bodo B, Murthy MM. Flavonoids from Limnophila indica. Phytochem 2007;68(5):636-9.
150. Saxena MK Morphological Markers to Identify Ceratophyllum demersum N.and C. muricatum Cham. Ind J Ecol 2017a; 44(3): 612-617
151. Karale S, Awati S, Chougule N Pharmacological Activities of Ceratophyllum demersum Linn. LAP Lambert Academic Publishing 2011.pp 84.
152. Zhu X, Dao G, Tao Y, Zhan X and Hu H. A review on control of harmful algal blooms by plant-derived allelochemicals. Journal of Hazardous Materials, 2020. pp.123403.
153. Simpson T, Pase M, Stough C. Bacopa monnieri as an antioxidant therapy to reduce oxidative stress in the aging brain. Evid Based complementary Altern Med 2015;2015.
154. Bankova V, Ivanova P, Christov R, Popov S. Secondary metabolites of Ceratophyllum demersum. Hydrobiologia 1995;316(1):59-61.
155. Kensa VM, Neelamegum R. GC-MS Determination of Bioactive Constituents of Hydrilla verticillata (Lf) Royle. Collected from Unpolluted and Polluted Water Sources. Asian J Biol 2016:1-6.
156. Xiao Y, Wang YL, Gao SX, Sun C, Zhou ZY. Chemical composition of Hydrilla verticillata (L. f.) royle in Taihu lake. Chin J Chem 2007;25(5):661-665.
157. Saxena MK Allelopathic effect of Hydrilla verticillata on the growth of Salvinia molesta. Ind J Ecol 2017b 44(4): 660-662
158. Parker JD, Collins DO and Kubanek J. Chemical defense promotes persistence of the aquatic plant Micranthemum umbrosum. J Chem Ecol 2006;32(4):815-833
159. Cangiano T, DellaGreca M, Fiorentino A, Isidori M, Monaco P, Zarrelli A. Lactone diterpenes from the aquatic plant Potamogeton natans. Phytochem 200;56(5):469-473.
160. DellaGreca M, Fiorentino A, Isidori M, Monaco P, Zarrelli A. Antialgal ent-labdane diterpenes from Ruppia maritima. Phytochem 2000;55(8):909-913.
161. Mues R. Species specific flavone glucuronides in Elodea species. Biochem System Ecol 1983;11(3):261-5.
162. DellaGreca M, Fiorentino A and Isidori M. Antialgal ent-labdane diterpenes from Ruppia maritima. Phytochem 2000;55(8): 909-913.
163. Wang W, Ji M, Wang M, Zhang N, Tang Y, Zhang Z. Allelopathy of Ruppia Maritima on Chlorella vulgaris in reclaimed wastewater. J Lake Scien 2007;19(3):321-325.
164. Wang HR, Sui HC, Zhu BT. Ellagic acid, a plant phenolic compound, activates cyclooxygenase mediated prostaglandin production. Exp Ther Med 2019;18(2):987-996.
165. Lupoae P, Cristea V, Borda D, Lupoae M, Gurau G and Dinica RM. Phytochemical screening: Antioxidant and antibacterial properties of Potamogeton species in order to obtain valuable feed additives. J Ooleo Scien 2015; p.ess15023.
166. Haroon AM. Effect of some macrophytes extracts on growth of Aspergillus parasiticus. Egypt J Aquatic Res 2006;32:301-313.
167. Kittakoop P, Wanasith S and Watts P. Potent Antiviral Potamogetonyde and Potamogetonol, New Furanoid Labdane Diterpenes from Potamogeton malaianus. J Nat Prod 2001;64(3):385-388.
168. Erhard D and Gross E. Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquatic Botany 2006;85:203-211
169. Erhard D, Pohnert G and Gross EM. Chemical defense in Elodea nuttalii reduces feeding and growth of aquatic herbivorous Lepidoptera. J Chem Ecol 2007;33(8):1573-1561.
170. Gao YN, Liu BY and Xu D. Phenolic compounds exuded from two submerged freshwater macrophytes and their allelopathic effects on Microcystic aeruginosa. Pol J Environ Stud 2011; 20(5):1153-1159
171. Prabha P and Rajkumar J. Phytochemical screening and bioactive potential of Hydrilla verticillata. J Chem Pharm Res 2015;7(3):1809-1815.
172. Bhavsar P.V., Asshish Panchal H, Omprakash Maheshwari. Potential review of Hydrilla, J Pharma Scien Bioscien Res 2016; 6(3):436-441.
173. Fasya G, Amalia S and Megawati DS. Isolation, identification, and bioactivity of steroids isolates from Hydrilla verticillata petroleum ether fraction A. IOP Conf. Series: Earth and Environmental Science 2020;456:012009.
174. Gupta J and Saxena MK. Allelopathic effect of dried leaves of Lantana camara L. p. 95-102; 2006. In: Plant Response to Environmental Stress, Tripathi RD, Kulshreshtha K, Agrawal M et al (eds), International Book Distributing Co. Lucknow
175. Zhalolov I, Khuzhaev VU, Levkovich MG and Aripova SF. Alkaloids of Arundo donax. VIII. 3-alkylindole derivatives in A. donax. Chem Nat Com 2000;36(5):528-30.
176. Miles DH, Tunsuwan K, Chittawong V, Hedin PA, Kokpol U, Ni CZ and Clardy J. Agrochemical activity and isolation of N-(4'-bromophenyl)-2, 2-diphenylacetanilide from the Thai plant Arundo donax. J Nat Prod. 1993;56(9):1590-1593.
177. Monograph Bacopa Monniera. Alternative Medicine Review 2004;9(1):79-85.
178. Siebert TE, Wood C, Elsey GM and Pollnitz AP. Determination of rotundone, the pepper aroma impact compound, in grapes and wine. J Agricul Food Chem 2008;56(10):3745-3748.
179. Halliwel RF, Davey PG and Lambert JJ. A patch clamp study of the effects of ciprofloxacin and biphenyl acetic acid on rat hippocampal neurone GABAA and lonotropic glutamate receptors. Neuropharmacology 1995;34(12):1615-1624.
180. Zhang M and Chen Y. Chemical constituent of Eclipta alba (L.) Hassk. Zhongguo Zhong YaoZa Zhi 1996;21(8):480-481.
181. Mithun NM, Shashidhara S and Kumar VR. Eclipta alba (L,) A review on its phytochemical and pharmacological profile. Pharmacogy Online 2011;1(1):345-357.
182. Van Aller RT, Pessoney GF, Rogers VA, Watkins EJ, Leggett HG. Oxygenated fatty acids: a class of allelochemicals from aquatic plants. 1985.
183. Della Greca M, Fiorention A, Monaco P, Previtera L. Cycloartane triterpenes from Juncus effusus. Phytochem 1994;35(4):1017-1022.
184. Corsaro M M, Dellagreca M, Fiorentino A, Monaco P, Previtera L. Cycloartane glucosides from Juncus effusus. Phytochem 1994;37:1017-1022.
185. Dong-Zhe J, Chiou GC, Iinuma M and Tanaka T. Two p-coumaroyl glycerides from Juncus effusus. Phytochemistry 1996;41(2):545-547.
186. Chun YM, Choi YD. Expansion of Phragmites australis (Cav.) Trin. ex Steud.(common reed) into Typha spp.(cattail) wetlands in northwestern Indiana, USA. J Plant Biol 2009;52(3):220-228.
187. Gao K, Boiano S, Marzocchella A, Rehmann L. Cellulosic butanol production from alkali-pretreated switchgrass (Panicum virgatum) and phragmites (Phragmites australis). Biores Technol 2014;174:176-81.
188. Jain SK, Sinha BK and Gupta RC. Notable Plants in Ethnomedicine of India. National Botanical Research Institute, Lucknow, Deep Publications, New Delhi. 1991. pp 219.
189. Datta SC. Allelopathic potential of Polygonum orientale L. in relation to germination and seedling growth of weeds. Flora 1992;169: 456-465
190. D'abrosca B, Dellagreca M, Fiorentino A, Isidori M, Monaco P and Pacifico S. Chemical constituents of the aquatic plant Schoenoplectus lacustris: evaluation of phytotoxic effects on the green alga Selenastrum capricornutum. J chem ecol 2006; 32(1): 81-96.
191. Varghese A, Gavani U and Abraham S. Phytochemical screening and antimicrobial investigation of Typha angustifolia Linn. Int J Chem Sci 2009; 7(3):1905-1910
192. Krishna ANV, Raman V and Babu KR. Antioxidant activity and GC-MS analysis of Phragmites vallatoria leaf ethanol extract. Int Res J Pharm 2012; 3(3): 252-254.
193. Chicalote-Castillo D, Ramírez-García P, Macías- Rubalcava ML. Allelopathic effects among selected species of phytoplankton and macrophytes. J Env Biol 2017;38:1221-1227.
194. Wöhler-Geske A, Moschner CR, Gellerich A, Militz H, Greef JM, Hartung E. Provenances and properties of thatching reed (Phragmites australis). Landbauforschung-Ger 2016; 66:1-0.
195. Derouiche SA, Azzi MA, Hamida AB. Effect of extracts aqueous of phragmites australis on carbohydrate metabolism, some enzyme activities and pancreatic islet tissue in alloxaninduced diabetic rats. Int J Pharm Pharm Sci. 2017;9(6):54-8.
196. Li FM, Hu HY. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl Environ Microbiol 2005;71(11):6545-6553.
197. Vamsikrishna AN, Ramgopal M, Raman BV, Balaji M. Anti Diabetic Efficacy of Ethanolic Extract Of Phragmites Vallatoria On Stz-Induced Diabetic Rats. Int J pharm sci 2012;4(1):118-20.
198. Ali F, Rahul, Naz F, Jyoti S, Siddique YH. Health functionality of apigenin: A review. Int J Food Prop 2017;20(6):1197-1238.
199. Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr cancer drug targets 2008;8(7):634-646.
200. Cook MT. Mechanism of metastasis suppression by luteolin in breast cancer. Breast Cancer: Targets and Therapy 2018;10:89.
201. Zhu L, Zhang D, Yuan C, Ding X, Shang Y, Jiang Y, Zhu G. Anti-Inflammatory and antiviral effects of water-soluble crude extract from Phragmites australis in vitro. Pakistan J Pharm Scien 2017;30(4).
202. Elsharkawy ER. Allelopathic Effects of Alkaloid Contents of Hyoscyamus muticus and Withania somnifera on the Germination of Cichorium intybus Seeds. Biosc Biotech Res Comm 2019;12(4):953-960.
203. Ervin GN, Wetzel RG. Allelochemical autotoxicity in the emergent wetland macrophyte Juncus effusus (Juncaceae). American J Bot 2000; 87(6):853-860.
204. Kuehn KA, Lemke MJ, Suberkropp K, Wetzel RG. Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus. Limnology and Oceanography. 2000; 45(4):862-870.
205. Inderjit. Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems. Springer Verlag. 2003. pp 272
206. Behery FA, Naeem ZE, Maatooq GT, Amer MM, Ahmed AF. A novel antioxidant phenanthrenoid dimer from Juncus acutus L. Nat Prod Res 2013;27(2):155-63.
207. DellaGreca M, Fiorentino A, Isidori M, Lavorgna M, Monaco P, Previtera L, Zarrelli A. Phenanthrenoids from the wetland Juncus acutus. Phytochemistry 2002;60(6):633-638.
208. Yang GZ, Li HX, Song FJ, Chen Y. Diterpenoid and phenolic compounds from Juncus effusus L. Helvetica chimica acta 2007;90(7):1289-1295.
209. Awaad AS. Phenolic glycosides of Juncus acutus and its anti-eczematic activity. Chem Nat Comp 2006;42(2):152-155.
210. Rodrigues MJ, Gangadhar KN, Zengin G, Mollica A, Varela J, Barreira L, Custódio L. Juncaceae species as sources of innovative bioactive compounds for the food industry: In vitro antioxidant activity, neuroprotective properties and in silico studies. Food Chem Toxicol 2017;107:590-596.
211. Al Hassan M, Chaura J, Donat-Torres MP, Boscaiu M, Vicente O. Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants 2017;9(2):plx009.
212. Rodrigues MJ, Gangadhar KN, Vizetto-Duarte C, Wubshet SG, Nyberg NT, Barreira L, Varela J, Custódio L. Maritime halophyte species from southern Portugal as sources of bioactive molecules. Marine Drugs 2014;12(4):2228-2244.
213. Shode, F.O., Mahomed, A.S. and Rogers, C.B., 2002. Typhaphthalide and typharin, two phenolic compounds from Typha capensis. Phytochemistry, 61(8), pp.955-957.
214. Fruet AC, Seito LN, Rall VL, Di Stasi LC. Dietary intervention with narrow-leaved cattail rhizome flour (Typha angustifolia L.) prevents intestinal inflammation in the trinitrobenzenesulphonic acid model of rat colitis. BMC Comp Alt Med 2012;12(1):62.
215. Tao WW, Yang NY, Liu L, Duan JA, Wu DK, Qian DW, Tang YP. Two new cerebrosides from the pollen of Typha angustifolia. Fitoterapia 2010;81(3):196-199.
216. Umesh TG. In-vitro antioxidant potential, free radical scavenging and cytotoxic activity of Simarouba gluaca leaves. Int J Pharm Scien 2015;7(2):411-416.
217. Qin F and Sun HX. Immunosuppressive activity of Pollen Typhae ethanol extract on the immune responses in mice. J ethnopharmacol 2005;102(3):424-429.
218. Londonkar RL, Kattegouga UM, Shivsharanappa K, Hanchinalmath JV. Phytochemical screening and in vitro antimicrobial activity of Typha angustifolia Linn leaves extract against pathogenic gram negative micro organisms. J Pharm Res 2013;6(2):280-283.
219. Gurunathan S. Biologically synthesized silver nanoparticles enhances antibiotic activity against Gram-negative bacteria. J Ind Engineer Chem 2015;29:217-26.
220. Abo-Altemen RA, Al-Shammari AM, Shawkat MS. GC-MS Analysis and Chemical Composition identification of Cyperus rotundus L. from Iraq. Energy Procedia 2019;157:1462-1474.
221. Al-Hilli Z, Al-Jumaily E and Yaseen N. Role of volatile oils fraction of Cyperus rotundus L. in induction of apoptosis on cancer cell lines in vitro. Iraqi J Biotech 2010; 9:286-298
222. Al-Saeedi AT. Total oligomeric flavonoids (ROF) of the herb tubers Cyperus rotundus induce growth inhibition and apoptosis in some cancer cell lines, a preliminary study. In: Proceedings of the AACR-NCIEORTC International Conference: Molecular Targets and Cancer Therapeutics: 2003 Oct 19-23; Boston, MA Philadelphia (PA) AACR: Mol Cancer Ther 12 (11 Suppl): Abstract no A176.
223. Jeyasheela R, Padmalatha C and Chairman K. Phytochemical analysis of Cyperus rotundus and its effect on ethanol treatedrats. Elixir Bio Tech 2011;37(2011):4137-4140.
224. Singh N, Pandey BR and Verma P. Phyto-pharmacotherapeutics of Cyperus rotundus Linn. (Motha): An overview. Indian J Natl Prod Res 2012;3:467-76
225. Kamala A, Middha SK, Gopinath C, Sindhura HS and Karigar CS. In vitro antioxidant potentials of Cyperus rotundus L. Rhizome extracts and their phytochemical analysis. Pharmacognosy magazine 2018;14(54):261.
226. Simorangkir D, Masfria M, Harahap U, Satria D. Activity Anticancer n-hexane Fraction of Cyperus Rotundus l. Rhizome to Breast Cancer MCF-7 Cell Line. Open Access Maced J Med Scien 2019;7(22):3904.
227. Wang F, Song X, Ma S, Liu C, Sun X, Wang X, Liu Z, Liang D, Yu Z. The treatment role of Cyperus rotundus L. to triple-negative breast cancer cells. Bioscience reports 2019;39(6).
228. Luo Y, Li X, He J, Su J, Peng L, Wu X, Du R, Zhao Q. Isolation, characterisation, and antioxidant activities of flavonoids from chufa (Eleocharis tuberosa) peels. Food chemistry 2014;164:30-35.
229. Nahak P, Gajbhiye RL, Karmakar G, Guha P, Roy B, Besra SE, Bikov AG, Akentiev AV, Noskov BA, Nag K, Jaisankar P. Orcinol Glucoside loaded polymer-lipid hybrid nanostructured lipid carriers: potential cytotoxic agents against gastric, Colon and Hepatoma carcinoma cell lines. Pharm Res 2018;35(10):198.
230. Manvar D, Mishra M, Kumar S, Pandey VN. Identification and evaluation of anti hepatitis C virus phytochemicals from Eclipta alba. J Ethnopharmacol 2012;144(3):545-54.
231. Malini S, Eganathan P. GC-MS Analysis of Chemical Composition of in vivo Plant, in vitro and Elicited Roots of Bacopa monnieri (L.) Pennell. Analytical Chemistry Letters 2013;3(5-6):380-388.
232. Cetrulo GL, Hay ME. Activated chemical defenses in tropical versus temperate seaweeds. Marine Ecology Progress Series 2000;207:243-53.
233. Bolser RC, Hay ME, Lindquist N, Fenical W, Wilson D. Chemical defenses of freshwater macrophytes against crayfish herbivory. Journal of chemical Ecology 1998;24(10):1639-58.
234. Thalang NA, Trakoontivakorn G, Nakahara K. Determination of antioxidant activity of some commonly consumed leafy vegetables in Thailand. JIRCAS Journal for Scientific Papers (Japan). 2001.
235. Lee SY, Abas F, Khatib A, Ismail IS, Shaari K, Zawawi N. Metabolite profiling of Neptunia oleracea and correlation with antioxidant and ?-glucosidase inhibitory activities using 1H NMR-based metabolomics. Phytochemistry Letters 2016;16:23-33.
236. Whittaker RH. New concepts of kingdoms of organisms. Science 1969;163(3863):150-60.
237. Howard BM, Nonomura AM, Fenical W. Chemotaxonomy in marine algae: secondary metabolite synthesis by Laurencia in unialgal culture. Biochemical systematics and ecology 1980;8(4):329-36.
238. Paul VJ, Fenical W. Natural products chemistry and chemical defense in tropical marine algae of the phylum Chlorophyta. In Bioorganic marine chemistry 1987 (pp. 1-29). Springer, Berlin, Heidelberg.
239. Paul VJ, Hay ME, Duffy JE, Fenical W, Gustafson K. Chemical defense in the seaweed Ochtodes secundiramea (Montagne) Howe (Rhodophyta): effects of its monoterpenoid components upon diverse coral-reef herbivores. Journal of experimental marine biology and ecology 1988;114(2-3):249-60.
240. Bakus GJ, Targett NM and Schulte B. Chemical ecology of marine organisms: an overview. Journal of Chemical Ecology 1986; 12(5): 951-987.
241. Paul VJ and Van Alstyne KL. Activation of chemical defenses in the tropical green algae Halimeda spp. Journal of Experimental Marine Biology and Ecology 1992 160(2): 191-203.
242. Swain T and Copper GD. Biochemical evolution in early land plants. 1981. pp. 103-134. In: Niklas KJ (Ed) Paleobotany, Paleoecology and Evolution Vol. 1. Praeger, New York
243. Larson RA and Berenbaum MR. Environmental phototoxicity. Environmental Science & Technology 1988; 22(4):354-360.
244. Rodrigues MJ, Vizetto-Duarte C, Gangadhar KN, Zengin G, Mollica A, Varela J, Barreira L, Custódio L. In vitro and in silico approaches to unveil the mechanisms underlying the cytotoxic effect of juncunol on human hepatocarcinoma cells. Pharmacological Reports 2018;70(5):896-899.
245. Rozema J, Björn LO, Bornman JF, Gaberš?ik A, Häder DP, Trošt T, Germ M, Klisch M, Gröniger A, Sinha RP, Lebert M. The role of UV-B radiation in aquatic and terrestrial ecosystems-an experimental and functional analysis of the evolution of UV-absorbing compounds. J Photochem and Photobio B: Biology 2002;66(1):2-12.
246. Stafford HA. Flavonoid evolution: an enzymic approach. Plant Physiol 1996;96:680- 685.
247. Wodniok S, Brinkmann H, Glöckner G, Heidel AJ, Philippe H, Melkonian M, Becker B. Origin of land plants: do conjugating green algae hold the key?. BMC Evolutionary Biology 2011;11(1):1-10.
248. Sculthorpe CD 1967 Biology of aquatic vascular plants.
249. Cutler HG, Cutler SJ, editors. Biologically active natural products: agrochemicals. CRC Press; 1999.
250. Muller CH. The Role of Allelopathy in the Evolution of Vegetation. In Chambers KL (ed) Biochemical Coevolution. Proceedings of the 29th Annual Biology Colloquitlm. 1970;13-32. Oregon State University Press. Corvallis. Oregon
251. Martin WF, Garg S and Zimorski V. Endosymbiotic theories for eukaryote origin. Philosophical Transactions of the Royal Society B: Biological Sciences 2015;370(1678):20140330.
252. Cook CDK. Aquatic Plant Book 2nd Edition. SPB Academic Publishing, Amsterdam: New York, 1996. pp 228.
14 Views | 19 Downloads
How to Cite
Manjula, D. M. K. S., N. S. Tanu, S. K. Sudhir, M. D. MP Dobhal, and S. D. Soumana. “Review POTENT PHARMACEUTICAL PRODUCTS FROM AQUATIC PLANTS-REVIEW”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 14, no. 1, Jan. 2021, pp. 48-63,
Review Article(s)