MULTICOMPONENT ONE-POT SYNTHESIS OF NOVEL INDOLE ANALOGUES AS POTENT ANTIOXIDANT AGENTS

Authors

  • PARVEEN RAJESAB Department of Chemistry, H. K. E. Society’s Smt. Veeramma Gangasiri Degree College and P. G. Centre for Women, Kalaburagi, Karnataka, India.
  • PRABHAKAR W CHAVAN Department of Post-Graduate Studies and Research in Chemistry, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, India. https://orcid.org/0000-0001-8326-7154
  • JAISHREE G BADIGER Department of Chemistry, H. K. E Society’s, M. S. Irani Degree College of Arts, Science and Commerce, Kalaburagi, Karnataka, India.
  • PRASHANT C HANAMSHETTY Department of Chemistry, Guru Nanak Degree College, Bidar, Karnataka, India.

DOI:

https://doi.org/10.22159/ajpcr.2022.v15i6.43926

Keywords:

Indole, Multicomponent reaction, Antioxidant, DNA cleavage activities

Abstract

Objective: The purpose of this study was to design and synthesize innovative multicomponent one-pot indole analogues that would be effective antioxidants for the body.

Methods: A novel series of indolyl-pyrimidine derivatives were synthesized and characterized by spectrum analysis, and their antioxidant activity and DPPH, total antioxidant capacity, ferric reducing antioxidant power methods, and DNA cleavage activity were examined.

Results: Compound 6a displayed promising free radical scavenging and total antioxidant properties. Compound 6b has demonstrated excellent ferric reducing activity, which is due to the presence of a “CH3” substitution at five position of indole. When compared to a standard DNA marker, compound 6a demonstrated the highest DNA cleavage activity at desired concentrations.

Conclusion: We have synthesized novel pyrimidine analogues containing an indole moiety to investigate drug-like molecules. We have devised that a method that is simple, multicomponent, has a short reaction time, and is ecologically benign.

Downloads

Download data is not yet available.

Author Biography

PRABHAKAR W CHAVAN, Department of Post-Graduate Studies and Research in Chemistry, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, India.

Dr. Parveen R, She is mainly involved in Design, synthesis/characterization of entitled molecules and crafting and in the generation of new  heterocyles containing indole nucleus, Dr. Prabhakar Chavan, he is the supervisor of the overall work. Dr. Jaishree B. and Dr. Prashant C Hanamshetty were involved in carrying out antioxidant activities.

References

Yadav JS, Bhunia DC, Singh VK, Srihari P. Solvent-free NbCl5 catalyzed condensation of 1, 3-dicarbonyl compounds and aldehydes: A facile synthesis of trisubstituted alkenes. Tetrahedron Lett 2009;50:2470-73. doi: 10.1016/j.tetlet.2009.03.015

Kumar A, Sharma S, Maurya RA. A novel multi-component reaction of indole, formaldehyde, and tertiary aromatic amines. Tetrahedron Lett 2009;50:5937-40. doi: 10.1016/j.tetlet.2009.08.046

Weber L. The application of multi-component reactions in drug discovery. Curr Med Chem 2002;9:2085-93. doi: 10.2174/0929867023368719, PMID 12470248

Sun C, Ji S, Liu Y. Facile synthesis of 3-(2-furanyl) indoles via a multicomponent reaction. Tetrahedron Lett 2007;48:8987-9. doi: 10.1016/j.tetlet.2007.10.098

Neochoritis CG, Zarganes-Tzitzikas T, Tsoleridis CA, Stephanidou- Stephanatou J, Kontogiorgis CA, Hadjipavlou-Litina DJ, et al. One-pot microwave assisted synthesis under green chemistry conditions, antioxidant screening, and cytotoxicity assessments of benzimidazole Schiff bases and pyrimido[1,2-a]benzimidazol-3(4H)-ones. Eur J Med Chem 2011;46:297-306. doi: 10.1016/j.ejmech.2010.11.018, PMID 21146903

Mavandadi F, Pilotti A. The impact of microwave-assisted organic synthesis in drug discovery. Drug Discov Today 2006;11:165-74. doi: 10.1016/S1359-6446(05)03695-0, PMID 16533715

Rajiv D, Shrivastava S, Sonwane SK, Srivastava SK. Pharmacological significance of synthetic heterocycles scaffold: A review. Adv Biol Res 2011;5:120-44.

Joule JA, Mills K. Heterocyclic Chemistry. 4th ed. Oxford: Blackwell Publishing; 2000.

Kerstin K, Sylvia VB, Stefan. The impact of microwave-assisted organic synthesis in drug discovery. Beilstein J Org Chem 2012;8:1191.

Pews-Davtyan A, Tillack A, Schmöle AC, Ortinau S, Frech MJ, Rolfs A, et al. A new facile synthesis of 3-amidoindole derivatives and their evaluation as potential GSK-3β inhibitors. Org Biomol Chem 2010;8:1149-53. doi: 10.1039/b920861e, PMID 20165807

Baeyer A. Ueber die Beziehangen der zimmtsanre zn der indigogruppe. Chem Ber 1880;13:2254-63.

Kogl F, Haagens-Smith AJ, Erxleben H. Estimation, isolation and identification of auxins in plant material. Physiol Chem 1933;214:241-61.

Rao VK, Chhikara BS, Shirazi AN, Tiwari R, Parang K, Kumar A. 3-substitued indoles: One-pot synthesis and evaluation of anticancer and Src kinase inhibitory activities. Bioorg Med Chem Lett 2011;21:3511- 4. doi: 10.1016/j.bmcl.2011.05.010, PMID 21612925

Ramesh D, Joji A, Vijayakumar BG, Sethumadhavan A, Mani M, Kannan T. Indole chalcones: Design, synthesis, in vitro and in silico evaluation against Mycobacterium tuberculosis. Eur J Med Chem 2020;198:112358. doi: 10.1016/j.ejmech.2020.112358, PMID 32361610

Garg V, Maurya RK, Thanikachalam PV, Bansal G, Monga V. An insight into the medicinal perspective of synthetic analogs of indole: A review. Eur J Med Chem 2019;180:562-612. doi: 10.1016/j. ejmech.2019.07.019, PMID 31344615

Sasada T, Kobayashi F, Sakai N, Konakahara T. An unprecedented approach to 4,5-Disubstituted pyrimidine derivatives by a ZnCl2- catalyzed three-component coupling reaction. Org Lett 2009;11:2161- 4. doi: 10.1021/ol900382j, PMID 19371078

Desai K, Patel R, Chikhali K. Synthesis of pyrimidine based thiazolidinones and azetidinones. Ind Chem 2006;45:773-81.

Fujiwara N, Nakajima T, Ueda Y, Fujita HK, Kawakami H. Novel piperidinylpyrimidine derivatives as inhibitors of HIV-1 LTR activation. Bioorg Med Chem 2008;16:9804-16. doi: 10.1016/j.bmc.2008.09.059, PMID 18926711

Ballell L, Field RA, Chung GA, Young RJ. New thiopyrazolo [3, 4-d] pyrimidine derivatives as anti-mycobacterial agents. Bioorg Med Chem Lett 2007;17:1736-40. doi: 10.1016/j.bmcl.2006.12.066, PMID 17239593

Wagner E, Al-Kadasi K, Zimecki M, Sawka-Dobrowolska W. Synthesis and pharmacological screening of derivatives of isoxazolo [4, 5-d] pyrimidine. Eur J Med Chem 2008;43:2498-504. doi: 10.1016/j. ejmech.2008.01.035, PMID 18358570

Jean-Damien C, David B, Ronald K, Julian G, Pan L, Robert D. PCT International Application. Vol. 22. United States: Vertex Pharmaceuticals Incorporated; 2002. p. 608704.

Gorlitzer K, Herbig S, Walter RD. Indeno[1,2-d]pyrimidin-4-ylamine. Pharmazie 1997;52:670-2.

Wang SQ, Fang L, Liu XJ, Zhao K. Design, synthesis, and hypnotic activity of pyrazolo[1,5-a]pyrimidine derivatives. Chin Chem Lett 2004;15:885-9.

Martínez-Urbina MA, Zentella A, Vilchis-Reyes MA, Guzmán A, Vargas O, Ramírez Apan MT, et al. 6-Substituted 2-(N-trifluoroacetylamino) imidazopyridines induce cell cycle arrest and apoptosis in SK-LU-1 human cancer cell line. Eur J Med Chem 2010;45:1211-9. doi: 10.1016/j.ejmech.2009.11.049, PMID 20045224

Halliwell B, Gutteridge JM. Free Radicals in Biology and Medicine. 2nd ed. Oxford: Clarendon Press; 1989.

Velioglu YS, Mazza G, Gao L, Oomah BD. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 1998;46:4113-7. doi: 10.1021/jf9801973

Hangun-Balkir Y, McKenney ML. Determination of antioxidant activities of berries and resveratrol. Green Chem Lett Rev 2012;5:147- 53. doi: 10.1080/17518253.2011.603756

Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006;160:1-40. doi: 10.1016/j.cbi.2005.12.009, PMID 16430879

Halliwell B. Antioxidants in human health and disease. Annu Rev Nutr 1996;16:33-50. doi: 10.1146/annurev.nu.16.070196.000341, PMID 8839918

Kataoka M, Tonooka K, Ando T, Imai K, Aimoto T. Hydroxyl radical scavenging activity of nonsteroidal anti-inflammatory drugs. Free Radic Res 1997;27:419-27. doi: 10.3109/10715769709065781, PMID 9416470

Squadrito GL, Pryor WA. Oxidative chemistry of nitric oxide: The roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med 1998;25:392-403. doi: 10.1016/s0891-5849(98)00095-1, PMID 9741578

Esposito E, Rotilio D, Di Matteo V, Di Giulio C, Cacchio M, Algeri S. A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging 2002;23:719-35. doi: 10.1016/s0197-4580(02)00078-7, PMID 12392777

Waris G, Ahsan H. Reactive oxygen species: Role in the development of cancer and various chronic conditions. J Carcinog 2006;5:14. doi: 10.1186/1477-3163-5-14, PMID 16689993

Prabhaker W. Synthesis and biological evaluation of novel indolyl-dihydropyridine-3-carboxylate,dihydro[1,2,4]triazol[1,5]pyridin- 3-carboxylate and carbohydrazide derivatives. Indian J Chem 2020;59B:1191-98.

Prabhaker W. An efficient three component one-pot synthesis of- 1,2,3,4-tetrahydro-4-oxo-6-(5-substituted 2-phenyl-1H-indol-3-yl)- 2-thioxopyrimidine-5-carbonitrile as antimicrobial and antitubercular agents. Asian J Pharm Clin Res 2020;14:94-7.

Prabhaker W, Basavaraj SN, Swathi B, Somashekhar G. Design, synthesis of biologically active heterocycles containing indol-thiazolyl-thiazolidinone derivatives. Int J Pharm Pharm Sci 2018;6:113-7.

Saundane AR, Yaralkatti M, Prabhaker W, Vijaykumar K. Synthesis, antimicrobial and antioxidant activities of indolyl pyrazoles. Indian J Heterocycl Chem 2012;21:255-8.

Parveen R, Biradar JS, Sasidhar BS. Design and synthesis of novel thiopheno-4-thiazolidinylindoles as potent antioxidant and antimicrobial agents. Chem Pap 2014;68:392-400.

Published

07-06-2022

How to Cite

RAJESAB, P., P. W. CHAVAN, J. G. BADIGER, and P. C HANAMSHETTY. “MULTICOMPONENT ONE-POT SYNTHESIS OF NOVEL INDOLE ANALOGUES AS POTENT ANTIOXIDANT AGENTS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 15, no. 6, June 2022, pp. 62-66, doi:10.22159/ajpcr.2022.v15i6.43926.

Issue

Section

Original Article(s)